CAN-296 is a complex carbohydrate (approximately 4300 Da) isolated from the cell wall of Mucor rouxii. It exhibits excellent in vitro fungicidal activity against a wide spectrum of pathogenic yeasts, including isolates resistant to azoles and polyenes. The rapid irreversible action of CAN-296 on intact fungal cells and protoplasts suggested a membrane-located target for its action. The proton translocating ATPase (H+-ATPase) of fungi is an essential enzyme required for the regulation of intracellular pH and nutrient transport. Inhibition of H+-ATPase leads to intracellular acidification and cell death. We therefore investigated the effect of CAN-296 on H+-ATPase-mediated proton pumping by intact cells of Candida and Saccharomyces species by measuring the glucose-induced acidification of external medium. CAN-296 inhibited proton pumping of Candida albicans, Candida glabrata, Candida krusei, Candida guilliermondii and Saccharomyces cerevisiae at low concentrations (0.075-1.25 mg/l). Other commonly used antifungal agents such as amphotericin B, itraconazole and fluconazole had no effect on H+-ATPase-mediated proton primping. A clinical isolate of C. glabrata with reduced in vitro susceptibility (MIC = 10 mg/l) to CAN-296 also showed resistance to CAN-296 inhibition of proton pumping. Purified membrane fractions rich in H+-ATPase activity were not inhibited by CAN-296 suggesting that the effect on the H+-ATPase-mediated proton pumping in intact yeast cells is an indirect effect, perhaps mediated by local or global disruption of the plasma membrane. These results suggest that the inhibition of fungal Ht-ATPase is at least partly responsible for the antifungal activity of CAN-296. (C) 2000 Elsevier Science B.V. and International Society of Chemotherapy. All rights reserved.