Stability of the zero solution of a family of functional-differential equations

被引:1
作者
Stevic, Stevo [1 ,2 ]
机构
[1] Serbian Acad Sci, Math Inst, Belgrade 11000, Serbia
[2] King Abdulaziz Univ, Dept Math, Jeddah 21589, Saudi Arabia
关键词
Functional-differential equation; Bounded solution; Stability; ASYMPTOTIC PROPERTIES; BOUNDED SOLUTIONS; 1ST DERIVATIVES; SYSTEMS; EXISTENCE;
D O I
10.1016/j.amc.2014.04.010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give some sufficient conditions under which the zero solution of the next functional-differential equation x'(t)-ax(t)+bx(tau(0)(t)) + Sigma(k)(j=1) c(j)(tau(j)(t)) + f(x(t),x(tau(k+1)(t)),.....,x(tau(k+1)(t))), where a, b, c(j) , j =(1,k) over bar are real numbers, f: Rl+1 -> R is a continuous function such that f(0,....,0) = 0, tau(j) is an element of C-2 [0, infinity 0, j = (0.k+1) over bar, is asymptotically stable. (c) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:50 / 56
页数:7
相关论文
共 34 条
[1]  
[Anonymous], 1970, Annali di Matematica Pura ed Applicata, DOI DOI 10.1007/BF02413530
[2]  
Bastinec J., 2012, ABSTR APPL ANAL, V2012
[3]  
Bel'skii D.V., 2005, NONLINEAR OSCIL, V8, P1
[4]  
Bel'skii D.V., 2004, NONLINEAR OSCIL, V7, P47
[5]   On exponential stability of linear differential equations with several delays [J].
Berezansky, Leonid ;
Braverman, Elena .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 324 (02) :1336-1355
[6]  
Blashchak N.I., 1997, DOPOV NATS AKAD NAUK, V8, P10
[7]  
de Bruijn N. G., 1953, INDAG MATH, V15, P449
[8]  
Derfel G.A., 1989, Ukrain. Mat. Zh, V41, P1322
[9]  
Diblik J., 1985, SBORNIK VUT, V1-, P5
[10]  
Diblik J., 1984, DEMONSTRATIO MATH, V17, P1031