Towards automatic pulmonary nodule management in lung cancer screening with deep learning

被引:265
作者
Ciompi, Francesco [1 ,2 ]
Chung, Kaman [1 ]
van Riel, Sarah J. [1 ]
Setio, Arnaud Arindra Adiyoso [1 ]
Gerke, Paul K. [1 ]
Jacobs, Colin [1 ]
Scholten, Ernst Th. [1 ]
Schaefer-Prokop, Cornelia [1 ]
Wille, Mathilde M. W. [3 ]
Marchiano, Alfonso [4 ]
Pastorino, Ugo [4 ]
Prokop, Mathias [1 ]
van Ginneken, Bram [1 ]
机构
[1] Radboud Univ Nijmegen, Med Ctr, Diagnost Image Anal Grp, Nijmegen, Netherlands
[2] Radboud Univ Nijmegen, Med Ctr, Dept Pathol, Nijmegen, Netherlands
[3] Gentofte Univ Hosp, Dept Resp Med, Copenhagen, Denmark
[4] Fdn IRCCS Ist Nazl Tumor, Milan, Italy
来源
SCIENTIFIC REPORTS | 2017年 / 7卷
关键词
CT IMAGES; CLASSIFICATION;
D O I
10.1038/srep46479
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The introduction of lung cancer screening programs will produce an unprecedented amount of chest CT scans in the near future, which radiologists will have to read in order to decide on a patient follow-up strategy. According to the current guidelines, the workup of screen-detected nodules strongly relies on nodule size and nodule type. In this paper, we present a deep learning system based on multi-stream multi-scale convolutional networks, which automatically classifies all nodule types relevant for nodule workup. The system processes raw CT data containing a nodule without the need for any additional information such as nodule segmentation or nodule size and learns a representation of 3D data by analyzing an arbitrary number of 2D views of a given nodule. The deep learning system was trained with data from the Italian MILD screening trial and validated on an independent set of data from the Danish DLCST screening trial. We analyze the advantage of processing nodules at multiple scales with a multi-stream convolutional network architecture, and we show that the proposed deep learning system achieves performance at classifying nodule type that surpasses the one of classical machine learning approaches and is within the inter-observer variability among four experienced human observers.
引用
收藏
页数:10
相关论文
共 34 条
  • [1] Reduced Lung-Cancer Mortality with Low-Dose Computed Tomographic Screening
    Aberle, Denise R.
    Adams, Amanda M.
    Berg, Christine D.
    Black, William C.
    Clapp, Jonathan D.
    Fagerstrom, Richard M.
    Gareen, Ilana F.
    Gatsonis, Constantine
    Marcus, Pamela M.
    Sicks, JoRean D.
    [J]. NEW ENGLAND JOURNAL OF MEDICINE, 2011, 365 (05) : 395 - 409
  • [2] [Anonymous], 2008, Visualizing data using t-sne
  • [3] Lung Pattern Classification for Interstitial Lung Diseases Using a Deep Convolutional Neural Network
    Anthimopoulos, Marios
    Christodoulidis, Stergios
    Ebner, Lukas
    Christe, Andreas
    Mougiakakou, Stavroula
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2016, 35 (05) : 1207 - 1216
  • [4] Bastien F., 2012, Theano: new features and speed improvements
  • [5] Ciompi F., 2015, P SPIE, V9414
  • [6] Automatic classification of pulmonary peri-fissural nodules in computed tomography using an ensemble of 2D views and a convolutional neural network out-of-the-box
    Ciompi, Francesco
    de Hoop, Bartjan
    van Riel, Sarah J.
    Chung, Kaman
    Scholten, Ernst Th.
    Oudkerk, Matthijs
    de Jong, Pim A.
    Prokop, Mathias
    van Ginneken, Bram
    [J]. MEDICAL IMAGE ANALYSIS, 2015, 26 (01) : 195 - 202
  • [7] Bag-of-Frequencies: A Descriptor of Pulmonary Nodules in Computed Tomography Images
    Ciompi, Francesco
    Jacobs, Colin
    Scholten, Ernst Th
    Wille, Mathilde M. W.
    de Jong, Pim A.
    Prokop, Mathias
    van Ginneken, Bram
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2015, 34 (04) : 962 - 973
  • [8] Coates A., 2011, P 14 AISTATS, P215
  • [9] Pulmonary Perifissural Nodules on CT Scans: Rapid Growth Is Not a Predictor of Malignancy
    de Hoop, Bartjan
    van Ginneken, Bram
    Gietema, Hester
    Prokop, Mathias
    [J]. RADIOLOGY, 2012, 265 (02) : 611 - 616
  • [10] de Koning H. J., 2013, ANN INTERNAL MED