Design of fuzzy output feedback stabilization for uncertain fractional-order systems

被引:34
作者
Ji, Yude [1 ,2 ]
Su, Lianqing [2 ]
Qiu, Jiqing [2 ]
机构
[1] Hebei Normal Univ, Coll Math & Sci Informat, Shijiazhuang 050024, Hebei, Peoples R China
[2] Hebei Univ Sci & Technol, Coll Sci, Shijiazhuang 050018, Hebei, Peoples R China
关键词
Fractional-order systems (FOS); Fuzzy output feedback controller; Linear matrix inequality (LMI); ROBUST STABILITY ANALYSIS; H-INFINITY CONTROL; MODEL; CONTROLLER;
D O I
10.1016/j.neucom.2015.09.041
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper focuses on the fuzzy output feedback stabilization for uncertain fractional-order systems (FOS) in the case of the fractional-order satisfying 0 < alpha < 1 and 1 <= alpha < 2. Firstly, the uncertain FOS is described by the so-called fractional-order Takagi-Sugeno (T-S) fuzzy model, and the fuzzy output feedback controller is correspondingly designed. Secondly, based on the slack variable method and FOS stability criteria, sufficient conditions in the form of linear matrix inequality (LMI) are derived for the robust asymptotical stability of the closed-loop control systems with fractional-order 0 < alpha < 1. Furthermore, the results are extended to stabilize the FOS with fractional-order 1 <= alpha < 2. Finally, two numerical simulation examples are given to show the effectiveness of the proposed method. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:1683 / 1693
页数:11
相关论文
共 49 条
[1]   Lyapunov functions for fractional order systems [J].
Aguila-Camacho, Norelys ;
Duarte-Mermoud, Manuel A. ;
Gallegos, Javier A. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2014, 19 (09) :2951-2957
[2]   Necessary and sufficient stability condition of fractional-order interval linear systems [J].
Ahn, Hyo-Sung ;
Chen, YangQuan .
AUTOMATICA, 2008, 44 (11) :2985-2988
[3]  
[Anonymous], 1999, FRACTIONAL DIFFERENT
[4]   Analysis of fractional delay systems of retarded and neutral type [J].
Bonnet, C ;
Partington, JR .
AUTOMATICA, 2002, 38 (07) :1133-1138
[5]   Fractional order Lyapunov stability theorem and its applications in synchronization of complex dynamical networks [J].
Chen, Diyi ;
Zhang, Runfan ;
Liu, Xinzhi ;
Ma, Xiaoyi .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2014, 19 (12) :4105-4121
[6]   Robust pole placement in LMI regions [J].
Chilali, M ;
Gahinet, P ;
Apkarian, P .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1999, 44 (12) :2257-2270
[7]   Stability of discrete fractional order state-space systems [J].
Dzielinski, Andrzej ;
Sierociuk, Dominik .
JOURNAL OF VIBRATION AND CONTROL, 2008, 14 (9-10) :1543-1556
[8]  
Fang Yuan, 2013, Information and Control, V42, P33, DOI 10.3724/SP.J.1219.2013.10033
[9]   Design of fuzzy state feedback controller for robust stabilization of uncertain fractional-order chaotic systems [J].
Huang, Xia ;
Wang, Zhen ;
Li, Yuxia ;
Lu, Junwei .
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2014, 351 (12) :5480-5493
[10]   Stabilization of fractional-order singular uncertain systems [J].
Ji, Yude ;
Qiu, Jiqing .
ISA TRANSACTIONS, 2015, 56 :53-64