A multi criteria decision making method for cubic hesitant fuzzy sets based on Einstein operational laws

被引:0
作者
Mehmood, Faisal [1 ]
Hayat, Khizar [2 ]
Mahmood, Tahir [3 ]
Cao, Bing-Yuan [4 ,5 ,6 ]
机构
[1] Beijing Inst Technol, Sch Math & Stat, Beijing 100081, Peoples R China
[2] Guangzhou Univ, Dept Math & Informat Sci, Guangzhou, Guangdong, Peoples R China
[3] Int Islamic Univ, Dept Math & Stat, Islamabad 44000, Pakistan
[4] Guangzhou Univ, Sch Math & Informat Sci, Guangzhou 510000, Guangdong, Peoples R China
[5] Foshan Univ, Dept Math & Big Data, Foshan 528000, Peoples R China
[6] Guangzhou Vocat Coll Sci & Technol, Guangzhou 510550, Guangdong, Peoples R China
来源
ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS | 2019年 / 42期
关键词
Cubic hesitant fuzzy sets (CHFSs); aggregation operators (AOs); cubic hesitant fuzzy Einstein weighted averaging (CHFEWA) operators; cubic hesitant fuzzy Einstein weighted geometric (CHFEWG) operator; multi criteria decision making (MCDM); AGGREGATION OPERATORS; INFORMATION AGGREGATION;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, Einstein operations for cubic hesitant fuzzy sets have been introduced and also proved its various results. Aggregation operators play an important role to aggregate the fuzzy information, in view of this fact cubic hesitant fuzzy Einstein weighted averaging operators, cubic hesitant fuzzy Einstein weighted geometric operators have been introduced. Finally, by using these aggregation operators a multi criteria decision making problem of real life has been solved.
引用
收藏
页码:652 / 669
页数:18
相关论文
共 34 条
  • [1] INTERVAL VALUED INTUITIONISTIC FUZZY-SETS
    ATANASSOV, K
    GARGOV, G
    [J]. FUZZY SETS AND SYSTEMS, 1989, 31 (03) : 343 - 349
  • [2] INTUITIONISTIC FUZZY-SETS
    ATANASSOV, KT
    [J]. FUZZY SETS AND SYSTEMS, 1986, 20 (01) : 87 - 96
  • [3] Interval-valued hesitant preference relations and their applications to group decision making
    Chen, Na
    Xu, Zeshui
    Xia, Meimei
    [J]. KNOWLEDGE-BASED SYSTEMS, 2013, 37 : 528 - 540
  • [4] A consensus model for group decision making with incomplete fuzzy preference relations
    Herrera-Viedma, Enrique
    Alonso, Sergio
    Chiclana, Francisco
    Herrera, Francisco
    [J]. IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2007, 15 (05) : 863 - 877
  • [5] Hong D. H., 2000, FUZZY SETS SYSTEMS, V21, P1
  • [6] Hwang C.-L., 1981, Lecture Notes in Economics and Mathematical Systems, P58, DOI [10.1007/978-3-642-48318-93, DOI 10.1007/978-3-642-48318-93]
  • [7] Jun Y.B., 2012, Ann. Fuzzy Math. Inform, V4, P83, DOI DOI 10.1177/0027432112446926
  • [8] Li B., 2018, IAENG INT J APPL MAT, V48, P67
  • [9] Multiattribute decision making models and methods using intuitionistic fuzzy sets
    Li, DF
    [J]. JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2005, 70 (01) : 73 - 85
  • [10] Liu PD, 2015, SCI IRAN, V22, P2684