Log-concave and spherical models in isoperimetry

被引:23
作者
Barthe, F [1 ]
机构
[1] Univ Marne la Vallee, Lab Anal & Math Appl, CNRS UMR 8050, F-77454 Marne La Vallee 2, France
关键词
D O I
10.1007/s00039-002-8235-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We derive several functional forms of isoperimetric inequalities, in the case, of concave isoperimetric profile. In particular, we answer the question of a canonical and sharp functional form of the Levy-Schmidt theorem on spheres. We use these results to derive a comparison theorem for product measures: the isoperimetric function of mu(1)circle times...circle timesmu(n) is bounded from below in terms of the isoperimetric functions of mu(1),...mu(n). We apply this to measures with finite dimensional isoperimetric behaviors. All the previous estimates can be improved when uniform enlargement is considered.
引用
收藏
页码:32 / 55
页数:24
相关论文
共 30 条
[1]   Levy-Gromov's isoperimetric inequality for an infinite dimensional diffusion generator [J].
Bakry, D ;
Ledoux, M .
INVENTIONES MATHEMATICAE, 1996, 123 (02) :259-281
[2]   Some remarks on isoperimetry of Gaussian type [J].
Barthe, F ;
Maurey, B .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2000, 36 (04) :419-434
[3]   Extremal properties of central half-spaces for product measures [J].
Barthe, F .
JOURNAL OF FUNCTIONAL ANALYSIS, 2001, 182 (01) :81-107
[4]  
Bobkov S, 1996, ANN PROBAB, V24, P35
[5]   A functional form of the isoperimetric inequality for the Gaussian measure [J].
Bobkov, S .
JOURNAL OF FUNCTIONAL ANALYSIS, 1996, 135 (01) :39-49
[6]  
Bobkov SG, 1997, ANN PROBAB, V25, P206
[7]  
Bobkov SG, 1997, STUD MATH, V123, P81
[8]  
Bobkov SG, 1997, ANN PROBAB, V25, P184
[9]   Discrete isoperimetric and Poincare-type inequalities [J].
Bobkov, SG ;
Götze, F .
PROBABILITY THEORY AND RELATED FIELDS, 1999, 114 (02) :245-277
[10]   Isoperimetric and analytic inequalities for log-concave probability measures [J].
Bobkov, SG .
ANNALS OF PROBABILITY, 1999, 27 (04) :1903-1921