Constructing infinite one-regular graphs

被引:28
作者
Malnic, A
Marusic, D
Seifter, N
机构
[1] Univ Ljubljana, IMFM, Ljubljana 1111, Slovenia
[2] Univ Leoben, Inst Angew Geometrie, A-8700 Leoben, Austria
关键词
D O I
10.1006/eujc.1999.0338
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A graph is said to be one-regular if its automorphism group acts regularly on the set of its arcs. A construction of an infinite family of infinite one-regular graphs of valency 4 is given. These graphs are Cayley graphs of almost abelian groups and hence of polynomial growth. (C) 1999 Academic Press.
引用
收藏
页码:845 / 853
页数:9
相关论文
共 22 条
[1]   CONSTRUCTING GRAPHS WHICH ARE 1/2-TRANSITIVE [J].
ALSPACH, B ;
MARUSIC, D ;
NOWITZ, L .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 1994, 56 :391-402
[2]   Remarks on path-transitivity in finite graphs [J].
Conder, MDE ;
Praeger, CE .
EUROPEAN JOURNAL OF COMBINATORICS, 1996, 17 (04) :371-378
[3]  
Djokovic D. Z., 1974, Journal of Combinatorial Theory, Series B, V16, P243, DOI 10.1016/0095-8956(74)90070-7
[4]   A ONE-REGULAR GRAPH OF DEGREE 3 [J].
FRUCHT, R .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1952, 4 (02) :240-247
[5]   FINDING A MAXIMUM-GENUS GRAPH IMBEDDING [J].
FURST, ML ;
GROSS, JL ;
MCGEOCH, LA .
JOURNAL OF THE ACM, 1988, 35 (03) :523-534
[6]  
GARDINER A, 1995, EUROP J COMBIN, V15, P383
[7]  
GARDINER A, 1995, EUROPJ COMBIN, V15, P375
[8]   GRAPHS WITH POLYNOMIAL-GROWTH ARE COVERING GRAPHS [J].
GODSIL, CD ;
SEIFTER, N .
GRAPHS AND COMBINATORICS, 1992, 8 (03) :233-241
[9]  
Gross J.L., 1987, Topological Graph Theory
[10]   A SURVEY ON GRAPHS WITH POLYNOMIAL-GROWTH [J].
IMRICH, W ;
SEIFTER, N .
DISCRETE MATHEMATICS, 1991, 95 (1-3) :101-117