Evaluation of methods for gravity wave extraction from middle-atmospheric lidar temperature measurements

被引:55
作者
Ehard, B. [1 ]
Kaifler, B. [1 ]
Kaifler, N. [1 ]
Rapp, M. [1 ]
机构
[1] Deutsch Zentrum Luft & Raumfahrt, Inst Phys Atmosphare, Oberpfaffenhofen, Germany
关键词
UPPER-STRATOSPHERE; RAYLEIGH LIDAR; DENSITY;
D O I
10.5194/amt-8-4645-2015
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
This study evaluates commonly used methods of extracting gravity-wave-induced temperature perturbations from lidar measurements. The spectral response of these methods is characterized with the help of a synthetic data set with known temperature perturbations added to a realistic background temperature profile. The simulations are carried out with the background temperature being either constant or varying in time to evaluate the sensitivity to temperature perturbations not caused by gravity waves. The different methods are applied to lidar measurements over New Zealand, and the performance of the algorithms is evaluated. We find that the Butterworth filter performs best if gravity waves over a wide range of periods are to be extracted from lidar temperature measurements. The running mean method gives good results if only gravity waves with short periods are to be analyzed.
引用
收藏
页码:4645 / 4655
页数:11
相关论文
共 30 条
[1]   Rayleigh lidar observations of gravity wave activity in the winter upper stratosphere and lower mesosphere above Davis, Antarctica (69°S, 78°E) [J].
Alexander, S. P. ;
Klekociuk, A. R. ;
Murphy, D. J. .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2011, 116
[2]   Temperature lidar measurements from 1 to 105 km altitude using resonance, Rayleigh, and Rotational Raman scattering [J].
Alpers, M ;
Eixmann, R ;
Fricke-Begemann, C ;
Gerding, M ;
Höffner, J .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2004, 4 :793-800
[3]   Simultaneous lidar observations of temperatures and waves in the polar middle atmosphere on the east and west side of the Scandinavian mountains:: a case study on 19/20 January 2003 [J].
Blum, U ;
Fricke, KH ;
Baumgarten, G ;
Schöch, A .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2004, 4 :809-816
[4]  
Chane-Ming F, 2000, ANN GEOPHYS-ATM HYDR, V18, P485, DOI 10.1007/s00585-000-0485-0
[5]   LIDAR OBSERVATION OF GRAVITY AND TIDAL WAVES IN THE STRATOSPHERE AND MESOSPHERE [J].
CHANIN, ML ;
HAUCHECORNE, A .
JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 1981, 86 (NC10) :9715-9721
[6]  
Duck TJ, 2001, J ATMOS SCI, V58, P3581, DOI 10.1175/1520-0469(2001)058<3581:TGWASV>2.0.CO
[7]  
2
[8]   Long-term lidar observations of wintertime gravity wave activity over northern Sweden [J].
Ehard, B. ;
Achtert, P. ;
Gumbel, J. .
ANNALES GEOPHYSICAE, 2014, 32 (11) :1395-1405
[9]   Combination of Lidar and Model Data for Studying Deep Gravity Wave Propagation [J].
Ehard, Benedikt ;
Achtert, Peggy ;
Dornbrack, Andreas ;
Gisinger, Sonja ;
Gumbel, Jorg ;
Khaplanov, Mikhail ;
Rapp, Markus ;
Wagner, Johannes .
MONTHLY WEATHER REVIEW, 2016, 144 (01) :77-98
[10]   Gravity wave dynamics and effects in the middle atmosphere [J].
Fritts, DC ;
Alexander, MJ .
REVIEWS OF GEOPHYSICS, 2003, 41 (01)