An embedded cohesive crack model for finite element analysis of quasi-brittle materials

被引:29
作者
Galvez, J. C. [1 ]
Planas, J. [2 ]
Sancho, J. M. [3 ]
Reyes, E. [1 ]
Cendon, D. A. [2 ]
Casati, M. J. [4 ]
机构
[1] Univ Politecn Madrid, ETS Ingn Caminos Canales & Puertos, Dep Ingn Civil Construcc, E-28040 Madrid, Spain
[2] Univ Politecn Madrid, ETS Ingn Caminos Canales & Puertos, Dep Ciencia Mat, E-28040 Madrid, Spain
[3] Univ Politecn Madrid, ETS Arquitectura, Dep Estruct Edificac, E-28040 Madrid, Spain
[4] Univ Politecn Madrid, EU Ingn Tecn Aeronaut, Dep Vehiculos Aeroespaciales, E-28040 Madrid, Spain
关键词
Cohesive zone; Quasibrittle materials; Concrete; Masonry; Finite element; Embedded crack; Localisation; STRONG DISCONTINUITIES; NORMAL/SHEAR CRACKING; FRACTURE; CONCRETE; DAMAGE;
D O I
10.1016/j.engfracmech.2012.08.021
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
This paper presents a numerical implementation of the cohesive crack model for the analysis of quasibrittle materials based on the strong discontinuity approach in the framework of the finite element method. A simple central force model is used for the stress versus crack opening curve. The additional degrees of freedom defining the crack opening are determined at the crack level, thus avoiding the need for performing a static condensation at the element level. The need for a tracking algorithm is avoided by using a consistent procedure for the selection of the separated nodes. Such a model is then implemented into a commercial program by means of a user subroutine, consequently being contrasted with the experimental results. The model takes into account the anisotropy of the material. Numerical simulations of well-known experiments are presented to show the ability of the proposed model to simulate the fracture of quasibrittle materials such as mortar, concrete and masonry. (c) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:369 / 386
页数:18
相关论文
共 58 条
  • [1] *ABAQUS, 2003, STAND US MAN VERS 6
  • [2] On the use of embedded discontinuity elements with crack path continuity for mode-I and mixed-mode fracture
    Alfaiate, J
    Wells, GN
    Sluys, LJ
    [J]. ENGINEERING FRACTURE MECHANICS, 2002, 69 (06) : 661 - 686
  • [3] [Anonymous], 1982, Technical report, 81-13
  • [4] [Anonymous], 2001, FEAP-A Finite Element Analysis Program, Version 7.4, User Manual
  • [5] [Anonymous], 2011, ANN BOOK ASTM STAND
  • [6] [Anonymous], 2002, 5 WORLD C COMP MECH
  • [7] Bazant PZ, 1983, Mater Et Constr, V16, P155, DOI DOI 10.1007/BF02486267
  • [8] Bazant Z.P., 1998, NEW D CIV E, P7
  • [9] NONLOCAL CONTINUUM DAMAGE, LOCALIZATION INSTABILITY AND CONVERGENCE
    BAZANT, ZP
    PIJAUDIERCABOT, G
    [J]. JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 1988, 55 (02): : 287 - 293
  • [10] BAZANT ZP, 1990, J ENG MECH-ASCE, V116, P2485