An Evaluation of Popular Hyperspectral Images Classification Approaches

被引:0
作者
Kuznetsov, Andrey [1 ]
Myasnikov, Vladislav [1 ]
机构
[1] Samara State Aerosp Univ, Samara, Russia
来源
EIGHTH INTERNATIONAL CONFERENCE ON MACHINE VISION (ICMV 2015) | 2015年 / 9875卷
关键词
hyperspectral image; decision tree; C; 4.5; Bayes classifier; maximum-likelihood method; MSE; classification by conjugation; spectral angle; spectral mismatch; SVM;
D O I
10.1117/12.2228602
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This work is devoted to the problem of the best hyperspectral images classification algorithm selection. The following algorithms are used for comparison: decision tree using full cross-validation; decision tree C 4.5; Bayesian classifier; maximum-likelihood method; MSE minimization classifier, including a special case - classification by conjugation; spectral angle classifier (for empirical mean and nearest neighbor), spectral mismatch classifier and support vector machine (SVM). There are used AVIRIS and SpecTIR hyperspectral images to conduct experiments.
引用
收藏
页数:5
相关论文
共 7 条
  • [1] [Anonymous], 2002, SURVEY DIMENSION RED
  • [2] Preprocessing EO-1 Hyperion hyperspectral data to support the application of agricultural indexes
    Datt, B
    McVicar, TR
    Van Niel, TG
    Jupp, DLB
    Pearlman, JS
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2003, 41 (06): : 1246 - 1259
  • [3] Hyperspectral image data analysis
    Landgrebe, D
    [J]. IEEE SIGNAL PROCESSING MAGAZINE, 2002, 19 (01) : 17 - 28
  • [4] Remote sensing of soil salinity: potentials and constraints
    Metternicht, GI
    Zinck, JA
    [J]. REMOTE SENSING OF ENVIRONMENT, 2003, 85 (01) : 1 - 20
  • [5] Perumal K., 2010, Journal of Computing, V2, P124, DOI DOI 10.1080/01431160110040323
  • [6] Quinlan J, 2014, C4.5: Programs for machine learning
  • [7] Shafri Helmi Zulhaidi Mohd, 2007, Journal of Computer Sciences, V3, P419, DOI 10.3844/jcssp.2007.419.423