Li-ion conductivity in Li9S3N

被引:30
作者
Miara, Lincoln J. [1 ]
Suzuki, Naoki [2 ]
Richards, William D. [3 ]
Wang, Yan [3 ]
Kim, Jae Chul [3 ]
Ceder, Gerbrand [3 ,4 ]
机构
[1] Samsung Adv Inst Technol USA, Cambridge, MA 02142 USA
[2] Samsung R&D Inst Japan, Osaka 5620036, Japan
[3] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA
[4] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA
基金
美国国家科学基金会;
关键词
SOLID ELECTROLYTES; LITHIUM; PRINCIPLES; CATHODE;
D O I
10.1039/c5ta05432j
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Li9S3N (LSN) is investigated as a new lithium ion conductor and barrier coating between an electrolyte and Li metal anode in all solid state lithium ion batteries. LSN is an intriguing material since it has a 3-dimensional conduction channel, high lithium content, and is expected to be stable against lithium metal. The conductivity of LSN is measured with impedance spectroscopy as 8.3 x 10(-7) S cm(-1) at room temperature with an activation energy of 0.52 eV. Cyclic voltammetry (CV) scans showed reversible Li plating and striping. First principles calculations of stability, nudged elastic band (NEB) calculations, and ab initio molecular dynamics (AIMD) simulations support these experimental results. Substitution as a means to enhance conductivity is also investigated. First-principles calculations predict that divalent cation substituents displace a lithium from a tetrahedral site along the migration pathway, and reduce the migration energy for the lithium ions in the vicinity of the substituent. A percolating path with low migration energies (similar to 0.3 eV) can be formed throughout the crystal structure at a concentration of Li8.5M0.25S3N (M = Ca2+, Zn2+, or Mg2+), resulting in predicted conductivities as high as sigma(300) (K) = 2.3 mS cm(-1) at this concentration. However, the enhanced conductivity comes at the expense of relatively large substitution energy. Halide substitution, such as Cl on a S site (Cl-S(center dot) in Kroger-Vink notation), has a relatively low energy cost, but only provides a modest improvement in conductivity.
引用
收藏
页码:20338 / 20344
页数:7
相关论文
共 26 条
  • [1] ELECTRICAL-PROPERTIES OF AMORPHOUS LITHIUM ELECTROLYTE THIN-FILMS
    BATES, JB
    DUDNEY, NJ
    GRUZALSKI, GR
    ZUHR, RA
    CHOUDHURY, A
    LUCK, CF
    ROBERTSON, JD
    [J]. SOLID STATE IONICS, 1992, 53 : 647 - 654
  • [2] THE INORGANIC CRYSTAL-STRUCTURE DATA-BASE
    BERGERHOFF, G
    HUNDT, R
    SIEVERS, R
    BROWN, ID
    [J]. JOURNAL OF CHEMICAL INFORMATION AND COMPUTER SCIENCES, 1983, 23 (02): : 66 - 69
  • [3] PROJECTOR AUGMENTED-WAVE METHOD
    BLOCHL, PE
    [J]. PHYSICAL REVIEW B, 1994, 50 (24): : 17953 - 17979
  • [4] Structure and dynamics of the fast lithium ion conductor "Li7La3Zr2O12"
    Buschmann, Henrik
    Doelle, Janis
    Berendts, Stefan
    Kuhn, Alexander
    Bottke, Patrick
    Wilkening, Martin
    Heitjans, Paul
    Senyshyn, Anatoliy
    Ehrenberg, Helmut
    Lotnyk, Andriy
    Duppel, Viola
    Kienle, Lorenz
    Janek, Juergen
    [J]. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2011, 13 (43) : 19378 - 19392
  • [5] Highly Mobile Ions: Low-Temperature NMR Directly Probes Extremely Fast Li+ Hopping in Argyrodite-Type Li6PS5Br
    Epp, Viktor
    Guen, Oezguel
    Deiseroth, Hans-Joerg
    Wilkening, Martin
    [J]. JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2013, 4 (13): : 2118 - 2123
  • [6] Effect of multiwalled carbon nanotubes on electrochemical properties of lithium sulfur rechargeable batteries
    Han, SC
    Song, MS
    Lee, H
    Kim, HS
    Ahn, HJ
    Lee, JY
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2003, 150 (07) : A889 - A893
  • [7] Computer modeling of lithium phosphate and thiophosphate electrolyte materials
    Holzwarth, N. A. W.
    Lepley, N. D.
    Du, Yaojun A.
    [J]. JOURNAL OF POWER SOURCES, 2011, 196 (16) : 6870 - 6876
  • [8] A rocking chair type all-solid-state lithium ion battery adopting Li2O-ZrO2 coated LiNi0.8Co0.15Al0.05O2 and a sulfide based electrolyte
    Ito, Seitaro
    Fujiki, Satoshi
    Yamada, Takanobu
    Aihara, Yuichi
    Park, Youngsin
    Kim, Tae Young
    Baek, Seung-Wook
    Lee, Jae-Myung
    Doo, Seokgwang
    Machida, Nobuya
    [J]. JOURNAL OF POWER SOURCES, 2014, 248 : 943 - 950
  • [9] Kamaya N, 2011, NAT MATER, V10, P682, DOI [10.1038/nmat3066, 10.1038/NMAT3066]
  • [10] Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
    Kresse, G
    Furthmuller, J
    [J]. PHYSICAL REVIEW B, 1996, 54 (16): : 11169 - 11186