On normal and structured matrices under unitary structure-preserving transformations

被引:0
作者
Kovac, Erna Begovic [1 ]
Fassbender, Heike [2 ]
Saltenberger, Philip [2 ]
机构
[1] Univ Zagreb, Fac Chem Engn & Technol, Marulicev Trg 19, Zagreb 10000, Croatia
[2] TU Braunschweig, Inst Numer Anal, Univ Pl 2, D-38106 Braunschweig, Germany
关键词
Normal matrices; Hamiltonian; Skew-Hamiltonian; Per-Hermitian; Perskew-Hermitian; Symplectic; Perplectic; Jacobi-type algorithm; Givens rotations; Diagonalization; SCHUR DECOMPOSITION; JACOBI; CONVERGENCE; ALGORITHM;
D O I
10.1016/j.laa.2020.09.019
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Structured canonical forms under unitary and suitable structure-preserving similarity transformations for normal and (skew-)Hamiltonian as well as normal and per (skew)-Hermitian matrices are proposed. Moreover, an algorithm for computing those canonical forms is sketched. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页码:322 / 342
页数:21
相关论文
共 16 条