Optimizing snake locomotion in the plane

被引:18
作者
Alben, Silas [1 ]
机构
[1] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
来源
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2013年 / 469卷 / 2159期
基金
美国国家科学基金会;
关键词
snake; friction; sliding; locomotion; optimization; LOW-REYNOLDS-NUMBER; PROPULSION; KINEMATICS;
D O I
10.1098/rspa.2013.0236
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We develop a numerical scheme to determine which planar snake motions are optimal for locomotory efficiency, across a wide range of frictional parameter space. For a large coefficient of transverse friction, we show that retrograde travelling waves are optimal. We give an asymptotic analysis showing that the optimal wave amplitude decays as the - 14 power of the coefficient of transverse friction. This result agrees well with the numerical optima. At the other extreme, zero coefficient of transverse friction, we propose a triangular direct wave that is optimal. Between these two extremes, a variety of complex, locally optimal motions are found. Some of these can be classified as standing waves (or ratcheting motions).
引用
收藏
页数:27
相关论文
共 35 条
[1]   Passive and active bodies in vortex-street wakes [J].
Alben, Silas .
JOURNAL OF FLUID MECHANICS, 2010, 642 :95-125
[2]  
[Anonymous], 1975, MATH BIOFLUIDDYNAMIC, DOI 10.1137/1.9781611970517
[3]  
[Anonymous], 1999, SPRINGER SCI
[4]   Optimal swimming at low Reynolds numbers [J].
Avron, JE ;
Gat, O ;
Kenneth, O .
PHYSICAL REVIEW LETTERS, 2004, 93 (18) :186001-1
[5]   On self-propulsion of micro-machines at low Reynolds number: Purcell's three-link swimmer [J].
Becker, LE ;
Koehler, SA ;
Stone, HA .
JOURNAL OF FLUID MECHANICS, 2003, 490 :15-35
[6]  
Bekker M.G., 1956, Theory of Land Locomotion
[7]  
Boyd JohnP, 2001, CHEBYSHEV FOURIER SP
[8]  
Childress S., 1981, Mechanics of Swimming and Flying (Cambridge Studies in Mathematical Biology)
[9]  
Cox R. G., 1970, Journal of Fluid Mechanics, V44, P791, DOI 10.1017/S002211207000215X
[10]   A two-dimensional model of low-Reynolds number swimming beneath a free surface [J].
Crowdy, Darren ;
Lee, Sungyon ;
Samson, Ophir ;
Lauga, Eric ;
Hosoi, A. E. .
JOURNAL OF FLUID MECHANICS, 2011, 681 :24-47