Optimizing snake locomotion in the plane

被引:18
作者
Alben, Silas [1 ]
机构
[1] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
来源
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2013年 / 469卷 / 2159期
基金
美国国家科学基金会;
关键词
snake; friction; sliding; locomotion; optimization; LOW-REYNOLDS-NUMBER; PROPULSION; KINEMATICS;
D O I
10.1098/rspa.2013.0236
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We develop a numerical scheme to determine which planar snake motions are optimal for locomotory efficiency, across a wide range of frictional parameter space. For a large coefficient of transverse friction, we show that retrograde travelling waves are optimal. We give an asymptotic analysis showing that the optimal wave amplitude decays as the - 14 power of the coefficient of transverse friction. This result agrees well with the numerical optima. At the other extreme, zero coefficient of transverse friction, we propose a triangular direct wave that is optimal. Between these two extremes, a variety of complex, locally optimal motions are found. Some of these can be classified as standing waves (or ratcheting motions).
引用
收藏
页数:27
相关论文
共 35 条
  • [1] Passive and active bodies in vortex-street wakes
    Alben, Silas
    [J]. JOURNAL OF FLUID MECHANICS, 2010, 642 : 95 - 125
  • [2] [Anonymous], 1975, MATH BIOFLUIDDYNAMIC, DOI 10.1137/1.9781611970517
  • [3] [Anonymous], 1999, SPRINGER SCI
  • [4] Optimal swimming at low Reynolds numbers
    Avron, JE
    Gat, O
    Kenneth, O
    [J]. PHYSICAL REVIEW LETTERS, 2004, 93 (18) : 186001 - 1
  • [5] On self-propulsion of micro-machines at low Reynolds number: Purcell's three-link swimmer
    Becker, LE
    Koehler, SA
    Stone, HA
    [J]. JOURNAL OF FLUID MECHANICS, 2003, 490 : 15 - 35
  • [6] Bekker M.G., 1956, Theory of Land Locomotion
  • [7] Boyd JohnP, 2001, CHEBYSHEV FOURIER SP
  • [8] Childress S., 1981, Mechanics of Swimming and Flying (Cambridge Studies in Mathematical Biology)
  • [9] Cox R. G., 1970, Journal of Fluid Mechanics, V44, P791, DOI 10.1017/S002211207000215X
  • [10] A two-dimensional model of low-Reynolds number swimming beneath a free surface
    Crowdy, Darren
    Lee, Sungyon
    Samson, Ophir
    Lauga, Eric
    Hosoi, A. E.
    [J]. JOURNAL OF FLUID MECHANICS, 2011, 681 : 24 - 47