The local potential approximation in the background field formalism

被引:57
作者
Bridle, Hamzaan [1 ]
Dietz, Juergen A. [1 ]
Morris, Tim R. [1 ]
机构
[1] Univ Southampton, Sch Phys & Astron, Southampton SO17 1BJ, Hants, England
来源
JOURNAL OF HIGH ENERGY PHYSICS | 2014年 / 03期
关键词
Renormalization Group; Models of Quantum Gravity; Nonperturbative Effects; EXACT RENORMALIZATION-GROUP; EXACT EVOLUTION EQUATION; EXPONENTS; FLOW;
D O I
10.1007/JHEP03(2014)093
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
Working within the familiar local potential approximation, and concentrating on the example of a single scalar field in three dimensions, we show that the commonly used approximation method of identifying the total and background fields, leads to pathologies in the resulting fixed point structure and the associated spaces of eigenoperators. We then show how a consistent treatment of the background field through the corresponding modified shift Ward identity, can cure these pathologies, restoring universality of physical quantities with respect to the choice of dependence on the background field, even within the local potential approximation. Along the way we point out similarities to what has been previously found in the f(R) approximation in asymptotic safety for gravity.
引用
收藏
页数:35
相关论文
共 43 条
  • [1] [Anonymous], JHEP
  • [2] Exact renormalization group equations: an introductory review
    Bagnuls, C
    Bervillier, C
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2001, 348 (1-2): : 91 - 157
  • [3] Benedetti D., 2012, JHEP, V1210, P157
  • [4] The local potential approximation in quantum gravity
    Benedetti, Dario
    Caravelli, Francesco
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2012, (06):
  • [5] Nonperturbative renormalization group preserving full-momentum dependence: Implementation and quantitative evaluation
    Benitez, F.
    Blaizot, J. -P.
    Chate, H.
    Delamotte, B.
    Mendez-Galain, R.
    Wschebor, N.
    [J]. PHYSICAL REVIEW E, 2012, 85 (02):
  • [6] Non-perturbative renormalization flow in quantum field theory and statistical physics
    Berges, J
    Tetradis, N
    Wetterich, C
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2002, 363 (4-6): : 223 - 386
  • [7] Revisiting the local potential approximation of the exact renormalization group equation
    Bervillier, C.
    [J]. NUCLEAR PHYSICS B, 2013, 876 (02) : 587 - 604
  • [8] High-accuracy scaling exponents in the local potential approximation
    Bervillier, Claude
    Juettner, Andreas
    Litim, Daniel F.
    [J]. NUCLEAR PHYSICS B, 2007, 783 (03) : 213 - 226
  • [9] Chang T. S., 1976, Phys. Lett., V57A, P7
  • [10] Investigating the ultraviolet properties of gravity with a Wilsonian renormalization group equation
    Codello, Alessandro
    Percacci, Roberto
    Rahmede, Christoph
    [J]. ANNALS OF PHYSICS, 2009, 324 (02) : 414 - 469