A qualitative path planner for robot navigation using human-provided maps

被引:15
作者
Shah, Danelle C. [1 ]
Campbell, Mark E. [1 ]
机构
[1] Cornell Univ, Dept Mech Engn, Ithaca, NY 14850 USA
关键词
Qualitative mapping; human-robot interaction; autonomous robotics; navigation; path-planning; adaptive control; ARE-HERE MAPS; SKETCH;
D O I
10.1177/0278364913496485
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
A method for controlling a mobile robot using qualitative inputs in the context of an approximate map, such as one sketched by a human, is presented. By defining a desired trajectory with respect to observable landmarks, human operators can send semi-autonomous robots into areas for which a true map is not available. Waypoint planning is formulated as a quadratic optimization problem which takes advantage of the probabilistic representation of the observed environment and the uncertain human input, resulting in robot trajectories in the true environment that are qualitatively similar to those provided by the human. This paper formally presents a methodology in which waypoints are extracted from a hand-drawn sketch, and obstacle avoidance is naturally accommodated through the addition of constraints in the optimization problem. A sensitivity analysis is performed to study how map distortions, sensor constraints, and a priori knowledge of the map orientation affect the performance of the planner. Lastly, a set of user studies is presented to demonstrate the robustness of the planner to different users' sketched maps and to illustrate the efficacy of such a method for mobile robot control.
引用
收藏
页码:1517 / 1535
页数:19
相关论文
共 54 条
[1]  
Allen GL, 2000, APPL COGNITIVE PSYCH, V14, P333
[2]  
[Anonymous], 2006, Def
[3]  
[Anonymous], 2002, 7 INT C SIM AD BEH
[4]  
[Anonymous], 1999, Wayfinding behavior: Cognitive mapping and other spatial processes
[5]   Factoring the Mapping Problem: Mobile Robot Map-building in the Hybrid Spatial Semantic Hierarchy [J].
Beeson, Patrick ;
Modayil, Joseph ;
Kuipers, Benjamin .
INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2010, 29 (04) :428-459
[6]  
Boyd S.P, 2004, Convex optimization, DOI [DOI 10.1017/CBO9780511804441, 10.1017/CBO9780511804441]
[7]  
Bugmann G., 2004, Proceedings of Intelligent Autonomous Systems, P96
[8]  
CHOWN E, 1995, COGNITIVE SCI, V19, P1, DOI 10.1207/s15516709cog1901_1
[9]   Robot navigation using qualitative landmark states from sketched route maps [J].
Chronis, G ;
Skubic, M .
2004 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, VOLS 1- 5, PROCEEDINGS, 2004, :1530-1535
[10]  
Chronis G, 2007, THESIS U MISSOURI CO