Topological entropy and Arnold complexity for two-dimensional mappings

被引:19
作者
Abarenkova, N
d'Auriac, JCA
Boukraa, S
Hassani, S
Maillard, JM [1 ]
机构
[1] Univ Blida, Inst Aeronaut, Blida, Algeria
[2] St Petersburg State Univ, Dept Theoret Phys, St Petersburg 198904, Russia
[3] CDTN, Alger 16000, Algeria
[4] LPTHE, F-75252 Paris, France
[5] CNRS, Ctr Rech Tres Basses Temp, F-38042 Grenoble, France
关键词
D O I
10.1016/S0375-9601(99)00662-3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
To test a possible relation between topological entropy and Arnold complexity, and to provide a nontrivial examples of rational dynamical zeta functions, we introduce a two-parameter family of discrete birational mappings of two complex variables;We conjecture rational expressions with integer coefficients for the number of fixed points and degree generating functions. We then deduce equal algebraic values for the complexity growth and for the exponential of the topological entropy. We also explain a semi-numerical method which supports these conjectures and localizes the integrable cases. We briefly discuss the adaptation of these results to the analysis of the same birational mapping seen as a mapping of two real variables. (C) 1999 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:44 / 49
页数:6
相关论文
共 20 条
[1]  
ABARENKOVA N, UNPUB
[2]  
ABARENKOVA N, CHAODYN9807014
[3]   TOPOLOGICAL ENTROPY [J].
ADLER, RL ;
KONHEIM, AG ;
MCANDREW, MH .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1965, 114 (02) :309-&
[4]  
Alligood K. T., 1997, CHAOS INTRO DYNAMICA
[5]  
[Anonymous], 1993, CHAOS DYNAMICAL SYST
[6]  
ARNOLD V, 1989, DEV MATH MOSCOW SCH, P261
[7]  
Arnold V. I., 1967, PROBLEMES ERGODIQUES
[8]   ON PERIODIC POINTS [J].
ARTIN, M ;
MAZUR, B .
ANNALS OF MATHEMATICS, 1965, 81 (01) :82-&
[9]   Periodic orbits and dynamical spectra [J].
Baladi, V .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1998, 18 :255-292
[10]   FACTORIZATION PROPERTIES OF BIRATIONAL MAPPINGS [J].
BOUKRAA, S ;
MAILLARD, JM .
PHYSICA A, 1995, 220 (3-4) :403-470