Graph-based semi-supervised learning: A review

被引:127
|
作者
Chong, Yanwen [1 ]
Ding, Yun [1 ]
Yan, Qing [2 ]
Pan, Shaoming [1 ]
机构
[1] Wuhan Univ, State Key Lab Informat Engn Surveying Mapping & R, 129 Luoyu Rd, Wuhan 430079, Peoples R China
[2] Anhui Univ, Coll Elect Engn & Automat, Hefei 230601, Peoples R China
基金
中国国家自然科学基金;
关键词
Semi-supervised learning; Transductive graph; Inductive graph; Scalable graph; LOW-RANK REPRESENTATION; FEATURE-EXTRACTION; LABEL PROPAGATION; FACE RECOGNITION; PSEUDO LABELS; SPARSE GRAPH; SUBSPACE; ALGORITHM; CLASSIFICATION; REGULARIZATION;
D O I
10.1016/j.neucom.2019.12.130
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Considering the labeled samples may be difficult to obtain because they require human annotators, special devices, or expensive and slow experiments. Semi-supervised learning (SSL) has tremendous practical value. Moreover, graph-based SSL methods have received more attention since their convexity, scalability and effectiveness in practice. The convexity of graph-based SSL guarantees that the optimization problems become easier to obtain local solution than the general case. The scalable graph-based SSL methods are convenient to deal with large-scale dataset for big data. Graph-based SSL methods aim to learn the predicted function for the labels of those unlabeled samples by exploiting the label dependency information reflected by available label information. The main purpose of this paper is to provide a comprehensive study of graph-based SSL. Specifically, the concept of the graph is first given before introducing graph-based semi-supervised learning. Then, we build a framework that divides the corresponding works into transductive graph-based SSL, inductive graph-based SSL, and scalable graph-based SSL. The core idea of these models is to impose graph constraints to the optimal function, which guarantees the smoothness over the graph. Next, several representative graph-based SSL methods are conducted on the three data sets, including two face data sets and a natural image data set. Finally, we outlook several directions for future work of graph-based SSL, and hope our review on graph-based SSL will offer insights for further research. (c) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页码:216 / 230
页数:15
相关论文
共 50 条
  • [21] Mixture distribution modeling for scalable graph-based semi-supervised learning
    Li, Zhi
    Li, Chaozhuo
    Yang, Liqun
    Yu, Philip S.
    Li, Zhoujun
    KNOWLEDGE-BASED SYSTEMS, 2020, 200
  • [22] Graph-based Semi-supervised Learning with Manifold Preprocessing for Image Classification
    Gong, Yun-Chao
    Liu, Feng
    Chen, Chuanliang
    2008 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS (SMC), VOLS 1-6, 2008, : 391 - +
  • [23] A review on graph-based semi-supervised learning methods for hyperspectral image classification
    Sawant, Shrutika S.
    Prabukumar, Manoharan
    EGYPTIAN JOURNAL OF REMOTE SENSING AND SPACE SCIENCES, 2020, 23 (02) : 243 - 248
  • [24] Semi-Supervised Logistic Discrimination Via Graph-Based Regularization
    Kawano, Shuichi
    Misumi, Toshihiro
    Konishi, Sadanori
    NEURAL PROCESSING LETTERS, 2012, 36 (03) : 203 - 216
  • [25] SOME NEW DIRECTIONS IN GRAPH-BASED SEMI-SUPERVISED LEARNING
    Zhu, Xiaojin
    Goldberg, Andrew B.
    Khot, Tushar
    ICME: 2009 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, VOLS 1-3, 2009, : 1504 - 1507
  • [26] Spectral Graph-Based Semi-supervised Learning for Imbalanced Classes
    Zheng, Q.
    Skillicorn, D. B.
    PROCEEDINGS OF THE 2016 IEEE/ACM INTERNATIONAL CONFERENCE ON ADVANCES IN SOCIAL NETWORKS ANALYSIS AND MINING ASONAM 2016, 2016, : 960 - 967
  • [27] Model Change Active Learning in Graph-Based Semi-supervised Learning
    Miller, Kevin S.
    Bertozzi, Andrea L.
    COMMUNICATIONS ON APPLIED MATHEMATICS AND COMPUTATION, 2024, 6 (02) : 1270 - 1298
  • [28] GRAPH-BASED SEMI-SUPERVISED LEARNING WITH MULTI-LABEL
    Zha, Zheng-Jun
    Mei, Tao
    Wang, Jingdong
    Wang, Zengfu
    Hua, Xian-Sheng
    2008 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, VOLS 1-4, 2008, : 1321 - +
  • [29] A Sampling Theory Perspective of Graph-Based Semi-Supervised Learning
    Anis, Aamir
    El Gamal, Aly
    Avestimehr, A. Salman
    Ortega, Antonio
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2019, 65 (04) : 2322 - 2342
  • [30] Scalable Graph-Based Semi-Supervised Learning through Sparse Bayesian Model
    Jiang, Bingbing
    Chen, Huanhuan
    Yuan, Bo
    Yao, Xin
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2017, 29 (12) : 2758 - 2771