On effect of non-uniform basic temperature gradient on Benard-Marangoni convection in micropolar fluid

被引:19
|
作者
Idris, R. [3 ]
Othman, H. [2 ]
Hashim, I. [1 ]
机构
[1] Univ Kebangsaan Malaysia, Sch Math Sci, Ctr Modelling & Data Anal, Bangi 43600, Selangor, Malaysia
[2] Univ Kebangsaan Malaysia, Fac Engn, Unit Pengajian Asas Kejuruteraan, Bangi 43600, Selangor, Malaysia
[3] Univ Malaysia Terengganu, Fac Sci & Technol, Dept Math, Kuala Terengganu 21030, Malaysia
关键词
Benard-Marangoni convection; Non-uniform thermal gradient; Micropolar; Thermocapillary; SURFACE TENSION; INSTABILITY; BUOYANCY; ONSET; LAYER;
D O I
10.1016/j.icheatmasstransfer.2008.11.009
中图分类号
O414.1 [热力学];
学科分类号
摘要
Linear stability analysis is performed to study the effect of non-uniform basic temperature gradients on the onset of Benard-Marangoni convection in a micropolar fluid. The influence of various parameters on the onset of convection has been analysed. The possibility of delaying the onset of convection by the application of a cubic basic state temperature profile is demonstrated. (C) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:255 / 258
页数:4
相关论文
共 41 条
  • [21] Effect of temperature-dependent viscosity on the onset of Benard-Marangoni ferroconvection in a ferrofluid saturated porous layer
    Nanjundappa, C. E.
    Savitha, B.
    Raju, B. Arpitha
    Shivakumara, I. S.
    ACTA MECHANICA, 2014, 225 (03) : 835 - 850
  • [22] A Numerical Modeling of Rayleigh–Marangoni Steady Convection in a Non-Uniform Differentially Heated 3D Cavity
    E. Bucchignani
    D. Mansutti
    Journal of Scientific Computing, 2004, 20 : 115 - 136
  • [23] Rayleigh-Benard-Marangoni convection in a weakly non-Boussinesq fluid layer with a deformable surface
    Lyubimov, D. V.
    Lyubimova, T. P.
    Lobov, N. I.
    Alexander, J. I. D.
    PHYSICS OF FLUIDS, 2018, 30 (02)
  • [24] A numerical modeling of Rayleigh-Marangoni steady convection in a non-uniform differentially heated 3D cavity
    Bucchignani, E
    Mansutti, D
    JOURNAL OF SCIENTIFIC COMPUTING, 2004, 20 (01) : 115 - 136
  • [25] Effects of non-uniform temperature gradients on surface tension driven two component magneto convection in a porous-fluid system
    Manjunatha, N.
    Sumithra, R.
    PROCEEDINGS OF THE 10TH NATIONAL CONFERENCE ON MATHEMATICAL TECHNIQUES AND ITS APPLICATIONS (NCMTA 18), 2018, 1000
  • [26] The Impact of Heat Source and Temperature Gradient on Brinkman-Benard Triple-Diffusive Magneto-Marangoni Convection in a Two-Layer System
    Narayanappa, Manjunatha
    Udhayakumar, Ramalingam
    Almarri, Barakah
    Ramakrishna, Sumithra
    Elshenhab, Ahmed M.
    SYMMETRY-BASEL, 2023, 15 (03):
  • [27] Temperature and heat flux bounds of convection driven by non-uniform internal heating
    Chen, Liangbing
    Gao, An-Kang
    Liao, Zimo
    Wan, Zhenhua
    Liu, Nansheng
    ACTA MECHANICA SINICA, 2024, 40 (08)
  • [28] Non-Darcian-Benard-magneto-surface tension driven convection in an infinite horizontal composite layer in the presence of heat source/sink and non-uniform temperature gradients
    Sumithra, R.
    Manjunatha, N.
    Komala, B.
    MALAYSIAN JOURNAL OF FUNDAMENTAL AND APPLIED SCIENCES, 2020, 16 (06): : 615 - 624
  • [29] Behaviour of the Onset of Rayleigh-Benard Convection in Double-Diffusive Micropolar Fluids Under the Influence of Cubic Temperature and Concentration Gradient
    Idris, R.
    Alias, A.
    Miqdady, A.
    MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES, 2023, 17 (03): : 441 - 458
  • [30] MHD thermosolutal marangoni convection heat and mass transport of power law fluid driven by temperature and concentration gradient
    Jiao, Chengru
    Zheng, Liancun
    Ma, Lianxi
    AIP ADVANCES, 2015, 5 (08):