Entropy and Thinning of Discrete Random Variables

被引:0
作者
Johnson, Oliver [1 ]
机构
[1] Univ Bristol, Sch Math, Univ Walk, Bristol BS8 1TW, Avon, England
来源
CONVEXITY AND CONCENTRATION | 2017年 / 161卷
关键词
METRIC-MEASURE-SPACES; FISHER INFORMATION; MONOTONICITY PROPERTIES; BINARY SEQUENCES; POWER INEQUALITY; STAM INEQUALITY; LOG-CONCAVITY; POISSON; CONVERGENCE; BOUNDS;
D O I
10.1007/978-1-4939-7005-6_2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We describe five types of results concerning information and concentration of discrete random variables, and relationships between them, motivated by their counterparts in the continuous case. The results we consider are information theoretic approaches to Poisson approximation, the maximum entropy property of the Poisson distribution, discrete concentration (Poincare and logarithmic Sobolev) inequalities, monotonicity of entropy and concavity of entropy in the Shepp-Olkin regime.
引用
收藏
页码:33 / 53
页数:21
相关论文
共 105 条
[1]   Sharp Bounds on the Entropy of the Poisson Law and Related Quantities [J].
Adell, Jose A. ;
Lekuona, Alberto ;
Yu, Yaming .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2010, 56 (05) :2299-2306
[2]  
Amari S.I., 2000, Methods of Information Geometry, DOI DOI 10.1090/MMONO/191
[3]  
Amari S.-i., 1987, Institute of Mathematical Statistics Lecture Notes-Monographs Series, V10
[4]   Counterexamples to a Proposed Stam Inequality on Finite Groups [J].
Anantharam, Venkat .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2010, 56 (04) :1825-1827
[5]  
Ane C., 2000, PANORAMAS SYNTHESES, V10, P217
[6]  
[Anonymous], 2008, Metric Spaces and in the Space of Probability Measures
[7]   Solution of Shannon's problem on the monotonicity of entropy [J].
Artstein, S ;
Ball, KM ;
Barthe, F ;
Naor, A .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 17 (04) :975-982
[8]   On the rate of convergence in the entropic central limit theorem [J].
Artstein, S ;
Ball, KM ;
Barthe, F ;
Naor, A .
PROBABILITY THEORY AND RELATED FIELDS, 2004, 129 (03) :381-390
[9]  
Bakry D., 2014, Grundlehren Math. Wiss, DOI DOI 10.1007/978-3-319-00227-9
[10]  
Bakry D, 1983, SEMINAIRE PROBABILIT, V84, P177, DOI 10.1007/BFb0075847