Free energies and asymptotic behaviour for incompressible viscoelastic fluids

被引:13
作者
Amendola, G. [2 ]
Fabrizio, M. [1 ]
Golden, J. M. [3 ]
Lazzari, B. [1 ]
机构
[1] Univ Bologna, Dipartmento Matemat, I-40127 Bologna, Italy
[2] Univ Pisa, Dipartimento Matemat Applicata, I-56126 Pisa, Italy
[3] Dublin Inst Technol, Dublin 8, Ireland
关键词
viscoelastic fluid; fading memory; free energy; behaviour of solutions; STABILITY;
D O I
10.1080/00036810903042117
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The existence, uniqueness and asymptotic stability for an incompressible, linear viscoelastic fluid is studied using a new free energy, the representation of which is based on the concept of a minimal state. A restriction imposed by thermodynamics is also used. Furthermore, an expression for the minimum free energy in the time domain is derived, which shows explicitly its dependence on the minimal state.
引用
收藏
页码:789 / 805
页数:17
相关论文
共 20 条
[1]  
AMENDOLA G, UKRAINIAN M IN PRESS
[2]   The minimum free energy for incompressible viscoelastic fluids [J].
Amendola, Giovambattista .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2006, 29 (18) :2201-2223
[3]  
Amendola G, 2007, DIFFER INTEGRAL EQU, V20, P445
[4]  
[Anonymous], 1992, Stud. Appl. Math.
[5]  
DAFERMOS CM, 1970, ARCH RATION MECH AN, V37, P297
[6]  
Datko R., 1970, Journal of Mathematical Analysis and Applications, V32, P610, DOI 10.1016/0022-247X(70)90283-0
[7]   The concept of a minimal state in viscoelasticity: New free energies and applications to PDEs [J].
Deseri, L ;
Fabrizio, M ;
Golden, M .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2006, 181 (01) :43-96
[8]   Maximum and minimum free energies for a linear viscoelastic material [J].
Fabrizio, M ;
Golden, JM .
QUARTERLY OF APPLIED MATHEMATICS, 2002, 60 (02) :341-381
[9]   ON THE EXISTENCE AND THE ASYMPTOTIC STABILITY OF SOLUTIONS FOR LINEARLY VISCOELASTIC SOLIDS [J].
FABRIZIO, M ;
LAZZARI, B .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1991, 116 (02) :139-152
[10]  
Fabrizio M., 1993, DIFFERENTIAL INTEGRA, V6, P491