Effects of vertex truncation of polyhedral nanostructures on localized surface plasmon resonance

被引:21
|
作者
Ma, W. Y. [1 ]
Yao, J. [1 ]
Yang, H. [1 ]
Liu, J. Y. [1 ]
Li, F. [1 ]
Hilton, J. P. [2 ]
Lin, Q. [2 ]
机构
[1] Chinese Acad Sci, Inst Opt & Elect, State Key Lab Opt Technol Microfabricat, Chengdu 610209, Peoples R China
[2] Columbia Univ, Dept Mech Engn, New York, NY 10027 USA
来源
OPTICS EXPRESS | 2009年 / 17卷 / 17期
基金
美国国家科学基金会;
关键词
OPTICAL-PROPERTIES; DIELECTRIC ENVIRONMENT; SILVER NANOPARTICLES; GOLD NANORODS; SPECTROSCOPY; NANOCUBES; SHAPE; SIZE;
D O I
10.1364/OE.17.014967
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Polyhedral nanostructures are widely used to enable localized surface plasmon resonance (LSPR). In practice, vertices of such structures are almost always truncated due to limitations of nanofabrication processes. This paper studies the effects of vertex truncation of polyhedral nanostructures on the characteristics of LSPR sensing. The optical properties and sensing performance of triangular nanoplates with truncated vertices are investigated using electrodynamics analysis and verified by experiment. The experimental results correlated with simulation analysis demonstrate that the fabricated triangular nanoplate array has a truncation ratio, defined as the length of truncation along an edge of the triangle over the edge length, of approximately 12.8%. This significantly influences optical properties of the nanostructures, resulting in poorer sensing performance. These insights can be used to guide the design and fabrication of nanostructures for high performance LSPR sensors. (C) 2009 Optical Society of America
引用
收藏
页码:14967 / 14976
页数:10
相关论文
共 50 条
  • [21] Effects of thickness & shape on localized surface plasmon resonance of sexfoil nanoparticles
    陈艳
    刘贤超
    陈卫东
    谢征微
    黄跃容
    李玲
    Chinese Physics B, 2017, (01) : 512 - 517
  • [22] Effects of thickness & shape on localized surface plasmon resonance of sexfoil nanoparticles
    Chen, Yan
    Liu, Xianchao
    Chen, Weidong
    Xie, Zhengwei
    Huang, Yuerong
    Li, Ling
    CHINESE PHYSICS B, 2017, 26 (01)
  • [23] Colloidal synthesis of new silver-based nanostructures with tailored localized surface plasmon resonance
    O. V. Dement’eva
    V. M. Rudoy
    Colloid Journal, 2011, 73 : 724 - 742
  • [24] Selective Attachment of Antibodies to the Edges of Gold Nanostructures for Enhanced Localized Surface Plasmon Resonance Biosensing
    Beeram, Srinivas R.
    Zamborini, Francis P.
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (33) : 11689 - +
  • [25] Ethanol Vapor Sensing Properties of Triangular Silver Nanostructures Based on Localized Surface Plasmon Resonance
    Ma, Wenying
    Yang, Huan
    Wang, Weimin
    Gao, Ping
    Yao, Jun
    SENSORS, 2011, 11 (09) : 8643 - 8653
  • [26] Localized Surface Plasmon Resonance and Refractive Index Sensitivity of Metal–Dielectric–Metal Multilayered Nanostructures
    Jyoti Katyal
    R. K. Soni
    Plasmonics, 2014, 9 : 1171 - 1181
  • [27] Modulation of localized surface plasmon resonance for an array of Ag nanostructures layered with nematic liquid crystals
    Shang, Zhenzhen
    Huang, Haishen
    Wan, Yuan
    Deng, Luogen
    OPTICS COMMUNICATIONS, 2016, 372 : 80 - 84
  • [28] Detection of DNA Immobilization and Hybridization on Gold/Silver Nanostructures Using Localized Surface Plasmon Resonance
    Park, Kyoung Hwan
    Kim, Sarah
    Yang, Seung-Man
    Park, Hyun Gyu
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2009, 9 (02) : 1374 - 1378
  • [29] Optimized Immobilization of Biomolecules on Nonspherical Gold Nanostructures for Efficient Localized Surface Plasmon Resonance Biosensing
    Garifullina, Ainash
    Shen, Amy Q.
    ANALYTICAL CHEMISTRY, 2019, 91 (23) : 15090 - 15098
  • [30] Nonlinear inelastic electron scattering from Au nanostructures induced by localized surface plasmon resonance
    ZheAn Li
    ChunKai Xu
    WenJie Liu
    Meng Li
    XiangJun Chen
    Scientific Reports, 8