Effects of vertex truncation of polyhedral nanostructures on localized surface plasmon resonance

被引:21
|
作者
Ma, W. Y. [1 ]
Yao, J. [1 ]
Yang, H. [1 ]
Liu, J. Y. [1 ]
Li, F. [1 ]
Hilton, J. P. [2 ]
Lin, Q. [2 ]
机构
[1] Chinese Acad Sci, Inst Opt & Elect, State Key Lab Opt Technol Microfabricat, Chengdu 610209, Peoples R China
[2] Columbia Univ, Dept Mech Engn, New York, NY 10027 USA
来源
OPTICS EXPRESS | 2009年 / 17卷 / 17期
基金
美国国家科学基金会;
关键词
OPTICAL-PROPERTIES; DIELECTRIC ENVIRONMENT; SILVER NANOPARTICLES; GOLD NANORODS; SPECTROSCOPY; NANOCUBES; SHAPE; SIZE;
D O I
10.1364/OE.17.014967
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Polyhedral nanostructures are widely used to enable localized surface plasmon resonance (LSPR). In practice, vertices of such structures are almost always truncated due to limitations of nanofabrication processes. This paper studies the effects of vertex truncation of polyhedral nanostructures on the characteristics of LSPR sensing. The optical properties and sensing performance of triangular nanoplates with truncated vertices are investigated using electrodynamics analysis and verified by experiment. The experimental results correlated with simulation analysis demonstrate that the fabricated triangular nanoplate array has a truncation ratio, defined as the length of truncation along an edge of the triangle over the edge length, of approximately 12.8%. This significantly influences optical properties of the nanostructures, resulting in poorer sensing performance. These insights can be used to guide the design and fabrication of nanostructures for high performance LSPR sensors. (C) 2009 Optical Society of America
引用
收藏
页码:14967 / 14976
页数:10
相关论文
共 50 条
  • [1] A numerical investigation of the effect of vertex geometry on localized surface plasmon resonance of nanostructures
    Ma, W. Y.
    Yang, H.
    Hilton, J. P.
    Lin, Q.
    Liu, J. Y.
    Huang, L. X.
    Yao, J.
    OPTICS EXPRESS, 2010, 18 (02): : 843 - 853
  • [2] Measurement of localized surface plasmon resonance of metallic nanostructures
    Zhang Xingfang
    Liu Fengshou
    Li Aiyun
    Yan Xin
    PROCEEDINGS OF THE 2015 INTERNATIONAL CONFERENCE ON MECHATRONICS, ELECTRONIC, INDUSTRIAL AND CONTROL ENGINEERING, 2015, 8 : 1502 - 1505
  • [3] Localized surface plasmon resonance in graphene nanomesh with Au nanostructures
    Wu, Yang
    Niu, Jing
    Danesh, Mohammad
    Liu, Jingbo
    Chen, Yuanfu
    Ke, Lin
    Qiu, Chengwei
    Yang, Hyunsoo
    APPLIED PHYSICS LETTERS, 2016, 109 (04)
  • [4] Plasmon hybridization in composite nanostructures with tunable resonances and vertex truncation analysis
    Luo, J.
    Qiu, C. K.
    Wang, W. M.
    Lin, Q.
    APPLIED OPTICS, 2014, 53 (16) : 3528 - 3532
  • [5] Optical properties of pentagram nanostructures based on localized surface plasmon resonance
    Zhu S.
    Zhou W.
    Journal of Optics, 2011, 40 (2) : 65 - 70
  • [6] Localized surface plasmon resonance: Nanostructures, bioassays and biosensing-A review
    Petryayeva, Eleonora
    Krull, Ulrich J.
    ANALYTICA CHIMICA ACTA, 2011, 706 (01) : 8 - 24
  • [7] Review of Surface Plasmon Resonance and Localized Surface Plasmon Resonance Sensor
    Chen, Yong
    Ming, Hai
    PHOTONIC SENSORS, 2012, 2 (01) : 37 - 49
  • [8] Review of surface plasmon resonance and localized surface plasmon resonance sensor
    Yong Chen
    Hai Ming
    Photonic Sensors, 2012, 2 (1) : 37 - 49
  • [9] Manipulating Bimetallic Nanostructures With Tunable Localized Surface Plasmon Resonance and Their Applications for Sensing
    Min, Yuanhong
    Wang, Yi
    FRONTIERS IN CHEMISTRY, 2020, 8
  • [10] Periodic Arrays of Dewetted Silver Nanostructures on Sapphire and Quartz: Effect of Substrate Truncation on the Localized Surface Plasmon Resonance and Near-Field Enhancement
    Demille, Trevor B.
    Hughes, Robert A.
    Neretina, Svetlana
    JOURNAL OF PHYSICAL CHEMISTRY C, 2019, 123 (32): : 19879 - 19886