Optoelectronic properties of silicon hexagonal nanotubes under an axial magnetic field

被引:6
|
作者
Ahmadi, N. [1 ]
Shokri, A. A. [2 ,3 ]
机构
[1] Islamic Azad Univ, Garmsar Branch, Dept Basic Sci, Garmsar, Iran
[2] Payame Noor Univ, Dept Phys, Tehran 193953697, Iran
[3] Inst Studies Theoret Phys & Math IPM, Dept Nanosci, POB 19395-5531, Tehran, Iran
关键词
Silicon hexagonal nanotubes; Optical properties; Magnetic field; Optical Transition; LINEAR OPTICAL-RESPONSE; AB-INITIO CALCULATIONS; CARBON NANOTUBES;
D O I
10.1016/j.optcom.2016.07.049
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In this work, we derive a clear and easy-to-use analytic expression for optical transition matrix elements for the zigzag silicon hexagonal nanotubes (Si h-NTs) in the presence of axial magnetic field. The optical dipole matrix elements and optical absorption are analytically derived in terms of one-dimensional wave vector, k(z) and subband index l for a light polarization parallel to the tube axis. The model is based on a single-orbital pi-electron tight-binding Hamiltonian extended up to the first nearest-neighbors. By comparing the band structure of tubes in different magnetic fields, one can see that the band gap is modified and the degenerated bands are split and create new allowed transition corresponding to the band modifications. Moreover, it is found that the system is metallic in the absence of magnetic field, but with increasing the magnetic flux the system tends towards the semiconducting behavior and the metal semiconductor phase transition is observed. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:282 / 288
页数:7
相关论文
共 50 条
  • [31] Effect of Axial Magnetic Field Strengths on Radial Velocity Field in Liquid Bridge under Microgravity
    Liang, Ruquan
    Yang, Shuo
    Ji, Junhong
    He, Jicheng
    ADVANCES IN CIVIL ENGINEERING II, PTS 1-4, 2013, 256-259 : 1670 - 1673
  • [32] Counter-rotating flow in coaxial cylinders under an axial magnetic field
    Mahfoud, B.
    Laouari, A.
    Hadjadj, A.
    Benhacine, H.
    EUROPEAN JOURNAL OF MECHANICS B-FLUIDS, 2019, 78 : 139 - 146
  • [33] Flow of High Prandtl Number Fluid under Varying Axial Magnetic Field
    Liang, Ruquan
    Yang, Shuo
    Ji, Junhong
    He, Jicheng
    ADVANCES IN CIVIL ENGINEERING II, PTS 1-4, 2013, 256-259 : 2412 - 2415
  • [34] Optoelectronic properties of porous silicon heterojunction photodetector
    Hadi, H. A.
    Ismail, R. A.
    Habubi, N. F.
    INDIAN JOURNAL OF PHYSICS, 2014, 88 (01) : 59 - 63
  • [35] DISPERSION OF CARBON NANOTUBES COATED WITH IRON (III) OXIDE INTO POLYMER COMPOSITE UNDER OSCILLATING MAGNETIC FIELD
    Dima, Dumitru
    Murarescu, Monica
    Andrei, Gabriel
    DIGEST JOURNAL OF NANOMATERIALS AND BIOSTRUCTURES, 2010, 5 (04) : 1009 - 1014
  • [36] The density of states for carbon nanotubes in a uniform magnetic field
    V. A. Geyler
    O. G. Kostrov
    V. A. Margulis
    Physics of the Solid State, 2002, 44 : 467 - 469
  • [37] Electrical properties of carbon nanotube field-effect transistors in applied axial magnetic field
    Liu Hong
    Yin Hai-Jian
    ACTA PHYSICA SINICA, 2009, 58 (05) : 3287 - 3292
  • [38] Optoelectronic Properties of a Cylindrical Core/Shell Nanowire: Effect of Quantum Confinement and Magnetic Field
    El-Yadri, Mohamed
    Hamdaoui, Jawad El
    Aghoutane, Noreddine
    Perez, Laura M.
    Baskoutas, Sotirios
    Laroze, David
    Diaz, Pablo
    Feddi, El Mustapha
    NANOMATERIALS, 2023, 13 (08)
  • [39] The density of states for carbon nanotubes in a uniform magnetic field
    Geyler, VA
    Kostrov, OG
    Margulis, VA
    PHYSICS OF THE SOLID STATE, 2002, 44 (03) : 467 - 469
  • [40] Nonlinear vibration of single-walled carbon nanotubes with nonlinear damping and random material properties under magnetic field
    Chang, T. -P.
    COMPOSITES PART B-ENGINEERING, 2017, 114 : 69 - 79