Induction of anti-cancer T cell immunity by in situ vaccination using systemically administered nanomedicines

被引:26
作者
Lynn, Geoffrey M. [1 ,2 ]
Laga, Richard [3 ]
Jewell, Christopher M. [1 ,4 ,5 ,6 ,7 ]
机构
[1] Fischell Dept Bioengn, A James Clark Hall,Room 5110,8278 Paint Branch Dr, College Pk, MD 20742 USA
[2] Avidea Technol, Baltimore, MD 21205 USA
[3] Czech Acad Sci, Inst Macromol Chem, Heyrovskeho 2, Prague 16206, Czech Republic
[4] US Dept Vet Affairs, VA Maryland Hlth Care Syst, 10 North Greene St, Baltimore, MD 21201 USA
[5] Robert E Fischell Inst Biomed Devices, A James Clark Hall,Room 5110,8278 Paint Branch Dr, College Pk, MD 20742 USA
[6] Univ Maryland, Dept Microbiol & Immunol, Sch Med, 685 West Baltimore Stree,HSF 1 Suite 380, Baltimore, MD 21201 USA
[7] Marlene & Stewart Greenebaum Canc Ctr, Execut Off, Suite N9E17,22 S Greene St, Baltimore, MD 21201 USA
关键词
Nanomedicine and biomaterials; Chemotherapeutic and immunostimulant; Nanoparticle and microparticle; Immunogenic cell death; Pattern recognition receptor; PHASE-II TRIAL; LARGE ESTABLISHED TUMORS; LYMPH-NODE; POLYMERIC MICELLES; DRUG-DELIVERY; NANOPARTICLE FORMULATION; PACLITAXEL POLIGLUMEX; ENHANCED PERMEABILITY; INTRATUMORAL DELIVERY; CANCER-IMMUNOTHERAPY;
D O I
10.1016/j.canlet.2019.114427
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Patients with inadequate anti-cancer T cell responses experience limited benefit from immune checkpoint inhibitors and other immunotherapies that require T cells. Therefore, treatments that induce de novo anti-cancer T cell immunity are needed. One strategy - referred to as in situ vaccination - is to deliver chemotherapeutic or immunostimulatory drugs into tumors to promote cancer cell death and provide a stimulatory environment for priming T cells against antigens already present in the tumor. However, achieving sufficient drug concentrations in tumors without causing dose-limiting toxicities remains a major challenge. To address this challenge, nano medicines based on nano-sized carriers ('nanocarriers') of chemotherapeutics and immunostimulants are being developed to improve drug accumulation in tumors following systemic (intravenous) administration. Herein, we present the rationale for using systemically administrable nanomedicines to induce anti-cancer T cell immunity via in situ vaccination and provide an overview of synthetic nanomedicines currently used clinically. We also describe general strategies for improving nanomedicine design to increase tumor uptake, including use of micelle- and star polymer-based nanocarriers. We conclude with perspectives for how nanomedicine properties, host factors and treatment combinations can be leveraged to maximize efficacy.
引用
收藏
页码:192 / 203
页数:12
相关论文
共 180 条
[41]   Novel star HPMA-based polymer conjugates for passive targeting to solid tumors [J].
Etrych, T. ;
Strohalm, J. ;
Chytil, P. ;
Rihova, B. ;
Ulbrich, K. .
JOURNAL OF DRUG TARGETING, 2011, 19 (10) :874-889
[42]   Thermosensitive Gel-Based Formulation for Intratumoral Delivery of Toll-Like Receptor 7/8 Dual Agonist, MEDI9197 [J].
Fakhari, Amir ;
Nugent, Sean ;
Elvecrog, James ;
Vasilakos, John ;
Corcoran, Marta ;
Tilahun, Ashenafi ;
Siebenaler, Kristen ;
Sun, Jenny ;
Subramony, J. Anand ;
Schwarz, Alexander .
JOURNAL OF PHARMACEUTICAL SCIENCES, 2017, 106 (08) :2037-2045
[43]   Targeting Myeloid-Derived Suppressor Cells to Bypass Tumor-Induced Immunosuppression [J].
Fleming, Viktor ;
Hu, Xiaoying ;
Weber, Rebekka ;
Nagibin, Vasyl ;
Groth, Christopher ;
Altevogt, Peter ;
Utikal, Jochen ;
Umansky, Viktor .
FRONTIERS IN IMMUNOLOGY, 2018, 9
[44]   ANGIOGENESIS IN CANCER, VASCULAR, RHEUMATOID AND OTHER DISEASE [J].
FOLKMAN, J .
NATURE MEDICINE, 1995, 1 (01) :27-31
[45]   TNFα and Radioresistant Stromal Cells Are Essential for Therapeutic Efficacy of Cyclic Dinucleotide STING Agonists in Nonimmunogenic Tumors [J].
Francica, Brian J. ;
Ghasemzadeh, Ali ;
Desbien, Anthony L. ;
Theodros, Debebe ;
Sivick, Kelsey E. ;
Reiner, Gabrielle L. ;
Glickman, Laura Hix ;
Marciscano, Ariel E. ;
Sharabi, Andrew B. ;
Leong, Meredith L. ;
McWhirter, Sarah M. ;
Dubensky, Thomas W. ;
Pardoll, Drew M. ;
Drake, Charles G. .
CANCER IMMUNOLOGY RESEARCH, 2018, 6 (04) :422-433
[46]   Local targets for immune therapy to cancer: Tumor draining lymph nodes and tumor microenvironment [J].
Fransen, Marieke F. ;
Arens, Ramon ;
Melief, Cornelis J. M. .
INTERNATIONAL JOURNAL OF CANCER, 2013, 132 (09) :1971-1976
[47]   Local Activation of CD8 T Cells and Systemic Tumor Eradication without Toxicity via Slow Release and Local Delivery of Agonistic CD40 Antibody [J].
Fransen, Marieke F. ;
Sluijter, Marjolein ;
Morreau, Hans ;
Arens, Ramon ;
Melief, Cornelis J. M. .
CLINICAL CANCER RESEARCH, 2011, 17 (08) :2270-2280
[48]   Immunological Effects of Conventional Chemotherapy and Targeted Anticancer Agents [J].
Galluzzi, Lorenzo ;
Buque, Aitziber ;
Kepp, Oliver ;
Zitvogel, Laurence ;
Kroemer, Guido .
CANCER CELL, 2015, 28 (06) :690-714
[49]   Low-dose controlled release of mTOR inhibitors maintains T cell plasticity and promotes central memory T cells [J].
Gammon, Joshua M. ;
Gosselin, Emily A. ;
Tostanoski, Lisa H. ;
Chiu, Yu-Chieh ;
Zeng, Xiangbin ;
Zeng, Qin ;
Jewell, Christopher M. .
JOURNAL OF CONTROLLED RELEASE, 2017, 263 :151-161
[50]   Improving the clinical impact of biomaterials in cancer immunotherapy [J].
Gammon, Joshua M. ;
Dold, Neil M. ;
Jewell, Christopher M. .
ONCOTARGET, 2016, 7 (13) :15421-15443