Induction of anti-cancer T cell immunity by in situ vaccination using systemically administered nanomedicines

被引:27
作者
Lynn, Geoffrey M. [1 ,2 ]
Laga, Richard [3 ]
Jewell, Christopher M. [1 ,4 ,5 ,6 ,7 ]
机构
[1] Fischell Dept Bioengn, A James Clark Hall,Room 5110,8278 Paint Branch Dr, College Pk, MD 20742 USA
[2] Avidea Technol, Baltimore, MD 21205 USA
[3] Czech Acad Sci, Inst Macromol Chem, Heyrovskeho 2, Prague 16206, Czech Republic
[4] US Dept Vet Affairs, VA Maryland Hlth Care Syst, 10 North Greene St, Baltimore, MD 21201 USA
[5] Robert E Fischell Inst Biomed Devices, A James Clark Hall,Room 5110,8278 Paint Branch Dr, College Pk, MD 20742 USA
[6] Univ Maryland, Dept Microbiol & Immunol, Sch Med, 685 West Baltimore Stree,HSF 1 Suite 380, Baltimore, MD 21201 USA
[7] Marlene & Stewart Greenebaum Canc Ctr, Execut Off, Suite N9E17,22 S Greene St, Baltimore, MD 21201 USA
关键词
Nanomedicine and biomaterials; Chemotherapeutic and immunostimulant; Nanoparticle and microparticle; Immunogenic cell death; Pattern recognition receptor; PHASE-II TRIAL; LARGE ESTABLISHED TUMORS; LYMPH-NODE; POLYMERIC MICELLES; DRUG-DELIVERY; NANOPARTICLE FORMULATION; PACLITAXEL POLIGLUMEX; ENHANCED PERMEABILITY; INTRATUMORAL DELIVERY; CANCER-IMMUNOTHERAPY;
D O I
10.1016/j.canlet.2019.114427
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Patients with inadequate anti-cancer T cell responses experience limited benefit from immune checkpoint inhibitors and other immunotherapies that require T cells. Therefore, treatments that induce de novo anti-cancer T cell immunity are needed. One strategy - referred to as in situ vaccination - is to deliver chemotherapeutic or immunostimulatory drugs into tumors to promote cancer cell death and provide a stimulatory environment for priming T cells against antigens already present in the tumor. However, achieving sufficient drug concentrations in tumors without causing dose-limiting toxicities remains a major challenge. To address this challenge, nano medicines based on nano-sized carriers ('nanocarriers') of chemotherapeutics and immunostimulants are being developed to improve drug accumulation in tumors following systemic (intravenous) administration. Herein, we present the rationale for using systemically administrable nanomedicines to induce anti-cancer T cell immunity via in situ vaccination and provide an overview of synthetic nanomedicines currently used clinically. We also describe general strategies for improving nanomedicine design to increase tumor uptake, including use of micelle- and star polymer-based nanocarriers. We conclude with perspectives for how nanomedicine properties, host factors and treatment combinations can be leveraged to maximize efficacy.
引用
收藏
页码:192 / 203
页数:12
相关论文
共 180 条
[1]   A phase II trial of Cremorphor EL-free paclitaxel (Genexol-PM) and gemcitabine in patients with advanced non-small cell lung cancer [J].
Ahn, Hee Kyung ;
Jung, Minkyu ;
Sym, Sun Jin ;
Shin, Dong Bok ;
Kang, Shin Myung ;
Kyung, Sun Young ;
Park, Jeong-Woong ;
Jeong, Sung Hwan ;
Cho, Eun Kyung .
CANCER CHEMOTHERAPY AND PHARMACOLOGY, 2014, 74 (02) :277-282
[2]   The effects of PEG grafting level and injection dose on gold nanorod biodistribution in the tumor-bearing mice [J].
Akiyama, Yasuyuki ;
Mori, Takeshi ;
Katayama, Yoshiki ;
Niidome, Takuro .
JOURNAL OF CONTROLLED RELEASE, 2009, 139 (01) :81-84
[3]   Factors affecting the clearance and biodistribution of polymeric nanoparticles [J].
Alexis, Frank ;
Pridgen, Eric ;
Molnar, Linda K. ;
Farokhzad, Omid C. .
MOLECULAR PHARMACEUTICS, 2008, 5 (04) :505-515
[4]   Immune Checkpoint Blockade in Cancer Therapy The 2015 Lasker-DeBakey Clinical Medical Research Award [J].
Allison, James P. .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2015, 314 (11) :1113-1114
[5]   Cancer therapy using nanoformulated substances: scientific, regulatory and financial aspects [J].
Alphandery, Edouard ;
Grand-Dewyse, Pierre ;
Lefevre, Raphael ;
Mandawala, Chalani ;
Durand-Dubief, Mickael .
EXPERT REVIEW OF ANTICANCER THERAPY, 2015, 15 (10) :1233-1255
[6]   Intra-lymph Node Injection of Biodegradable Polymer Particles [J].
Andorko, James I. ;
Tostanoski, Lisa H. ;
Solano, Eduardo ;
Mukhamedova, Maryam ;
Jewell, Christopher M. .
JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2014, (83)
[7]   Talimogene Laherparepvec Improves Durable Response Rate in Patients With Advanced Melanoma [J].
Andtbacka, Robert H. I. ;
Kaufman, Howard L. ;
Collichio, Frances ;
Amatruda, Thomas ;
Senzer, Neil ;
Chesney, Jason ;
Delman, Keith A. ;
Spitler, Lynn E. ;
Puzanov, Igor ;
Agarwala, Sanjiv S. ;
Milhem, Mohammed ;
Cranmer, Lee ;
Curti, Brendan ;
Lewis, Karl ;
Ross, Merrick ;
Guthrie, Troy ;
Linette, Gerald P. ;
Daniels, Gregory A. ;
Harrington, Kevin ;
Middleton, Mark R. ;
Miller, Wilson H., Jr. ;
Zager, Jonathan S. ;
Ye, Yining ;
Yao, Bin ;
Li, Ai ;
Doleman, Susan ;
VanderWalde, Ari ;
Gansert, Jennifer ;
Coffin, Robert S. .
JOURNAL OF CLINICAL ONCOLOGY, 2015, 33 (25) :2780-U98
[8]   Intratumoral Delivery of Immunotherapy-Act Locally, Think Globally [J].
Angela Aznar, M. ;
Tinari, Nicola ;
Rullan, Antonio J. ;
Sanchez-Paulete, Alfonso R. ;
Rodriguez-Ruiz, Maria E. ;
Melero, Ignacio .
JOURNAL OF IMMUNOLOGY, 2017, 198 (01) :31-39
[9]   Modulating Pharmacokinetics, Tumor Uptake and Biodistribution by Engineered Nanoparticles [J].
Arvizo, Rochelle R. ;
Miranda, Oscar R. ;
Moyano, Daniel F. ;
Walden, Chad A. ;
Giri, Karuna ;
Bhattacharya, Resham ;
Robertson, J. David ;
Rotello, Vincent M. ;
Reid, Joel M. ;
Mukherjee, Priyabrata .
PLOS ONE, 2011, 6 (09)
[10]   Doxil® - The first FDA-approved nano-drug: Lessons learned [J].
Barenholz, Yechezkel .
JOURNAL OF CONTROLLED RELEASE, 2012, 160 (02) :117-134