On weakly para-cosymplectic manifolds of dimension 3

被引:18
作者
Dacko, Piotr [1 ]
Olszak, Zbigniew [1 ]
机构
[1] Wroclaw Tech Univ, Inst Math & Comp Sci, PL-50370 Wroclaw, Poland
关键词
(nearly) para-cosymplectic manifold; locally homogeneous pseudo-Riemannian manifold;
D O I
10.1016/j.geomphys.2006.05.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The local structure of a 3-dimensional essentially weakly para-cosymplectic manifold is described in two ways: using special adapted local frames and special coordinate systems. This enables a description of the curvature of such manifolds. Local isometrics and Killing vector fields are also investigated. It is proved that if a 3-dimensional weakly para-cosymplectic manifold is locally homogeneous as a Riemannian manifold, then it is para-cosymplectic or locally flat. Then a classification of such manifolds is given. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:561 / 570
页数:10
相关论文
共 8 条
[1]  
BLAIR D. E., 2002, PROGR MATH, V203
[2]  
Cruceanu V, 1996, ROCKY MT J MATH, V26, P83, DOI 10.1216/rmjm/1181072105
[3]  
CRUCEANU V, 1995, PARAHERMITIAN PARAKA, P1
[4]  
Dacko P., 2004, Tsukuba J. Math., V28, P193
[5]  
Erdem S, 2002, HOUSTON J MATH, V28, P21
[6]  
GADEA PM, 1992, NOVA J ALG GEOM, V1, P111
[7]   INTEGRABILITY OF ALMOST COSYMPLECTIC STRUCTURES [J].
GOLDBERG, SI ;
YANO, K .
PACIFIC JOURNAL OF MATHEMATICS, 1969, 31 (02) :373-&
[8]  
OLSZAK Z., 1981, Kodai Mathematical Journal, V4, P239