Degenerate stochastic differential equations and super-Markov chains

被引:39
作者
Athreya, SR [1 ]
Barlow, MT
Bass, R
Perkins, EA
机构
[1] Indian Stat Inst, Stat Math Unit, New Delhi 110016, India
[2] Univ British Columbia, Dept Math, Vancouver, BC V6T 1Z2, Canada
[3] Univ Connecticut, Dept Math, Storrs, CT 06269 USA
关键词
stochastic differential equations; Martingale problem; elliptic operators; degenerate operators; diffusions; Bessel processes;
D O I
10.1007/s004400100191
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider diffusions corresponding to the generator Lf(x) = Sigma(i=1)(d) x(i)gamma(i)(x) partial derivative(2)/partial derivativex(i)(2)f(x) + b(i)(x)partial derivative/partial derivativex(i) f(x), x is an element of R-+(d), for continuous gamma(i), b(i) : R-+(d) --> R with gamma(i) nonnegative. We show uniqueness for the corresponding martingale problem under certain non-degeneracy conditions on b(i), gamma(i) and present a counter-example when these conditions are not satisfied. As a special case, we establish uniqueness in law for some classes of super-Markov chains with state dependent branching rates and spatial motions.
引用
收藏
页码:484 / 520
页数:37
相关论文
共 28 条
  • [1] [Anonymous], 1993, ECOLE DETE PROBABILI
  • [2] [Anonymous], MEM AM MATH SOC
  • [3] [Anonymous], 1968, Probability
  • [4] [Anonymous], PROBABILISTIC TECHNI
  • [5] [Anonymous], 1944, TREATISE THEORY BESS
  • [6] [Anonymous], 1997, DIFFUSIONS ELLIPTIC
  • [7] Athreya S, 2000, ANN PROBAB, V28, P1711
  • [8] BASS RF, DEGENERATE STOCHASTI
  • [9] BLUMENTHAL RM, 1968, MARKOV PROCESSES POT
  • [10] DAWSON D, IN PRESS ANN PROBAB