Propagation of an electromagnetic wave in an absorbing anisotropic medium and infrared transmission of liquid crystals: Comparison with experiments

被引:0
|
作者
Scaife, B. K. P. [1 ]
Sigarev, A. A. [1 ,3 ]
Vij, J. K. [1 ]
Goodby, J. W. [2 ]
机构
[1] Univ Dublin Trinity Coll, Dept Elect & Elect Engn, Dublin 2, Ireland
[2] Univ York, Dept Chem, York YO10 5DD, N Yorkshire, England
[3] Moscow Inst Phys & Technol, Dolgoprudnyi 141700, Moscow, Russia
来源
PHYSICAL REVIEW E | 2009年 / 80卷 / 02期
基金
英国工程与自然科学研究理事会;
关键词
birefringence; electromagnetic wave propagation; infrared spectra; liquid crystals; molecular orientation; permittivity; polarisability;
D O I
10.1103/PhysRevE.80.021704
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The theory of the absorbance of a semi-infinite medium characterized by a second-rank dielectric tensor for the entire electromagnetic spectrum, as given by Scaife and Vij [J. Chem. Phys. 122, 174901 (2005)], is extended to include molecules of prolate spheriodal shape with longitudinal and transverse polarizabilities and to cover the case of elliptically polarized incident radiation. The theory is applied to the infrared transmission experiments of biaxial liquid crystals. It is found that the formula for the dependence on frequency and on angle of polarization of the absorbance A(omega,theta)=-log(10)[10(A(omega,0)) cos(2) theta+10(-A(omega,pi/2)) sin(2) theta)] is unaffected by the anisotropy of the molecules and by the elliptical polarization of the incident radiation. A small (+/- 5%) discrepancy between theory and experiment has been found for bands with high absorbances. It is found that this discrepancy does not depend on birefringence of the sample but may depend on the precise method of absorbance measurement and on effects at the surface of the cell containing the liquid crystal under test.
引用
收藏
页数:7
相关论文
共 19 条
  • [1] Electromagnetic wave propagation in a nonstationary medium
    G. Ya. Krasnikov
    N. V. Chernyaev
    I. V. Matyushkin
    Doklady Mathematics, 2015, 92 : 609 - 613
  • [2] Electromagnetic wave propagation in a nonstationary medium
    Krasnikov, G. Ya.
    Chernyaev, N. V.
    Matyushkin, I. V.
    DOKLADY MATHEMATICS, 2015, 92 (02) : 609 - 613
  • [3] Propagation of Electromagnetic Waves in Cholesteric Liquid Crystals
    Dossumbekov, K. R.
    Ispulov, N. A.
    Kurmanov, A. A.
    Zhumabekov, A. Zh.
    RUSSIAN PHYSICS JOURNAL, 2021, 64 (08) : 1391 - 1399
  • [4] Propagation of Electromagnetic Waves in Cholesteric Liquid Crystals
    K. R. Dossumbekov
    N. A. Ispulov
    A. A. Kurmanov
    A. Zh. Zhumabekov
    Russian Physics Journal, 2021, 64 : 1391 - 1399
  • [5] A Review of Tunable Electromagnetic Metamaterials With Anisotropic Liquid Crystals
    Xu, Jing
    Yang, Ruisheng
    Fan, Yuancheng
    Fu, Quanhong
    Zhang, Fuli
    FRONTIERS IN PHYSICS, 2021, 9
  • [6] Mathematical Modeling of Electromagnetic Wave Propagation in Inhomogeneous Medium
    Dmitrieva, I. Yu.
    2013 IEEE XXXIII INTERNATIONAL SCIENTIFIC CONFERENCE ELECTRONICS AND NANOTECHNOLOGY (ELNANO), 2013, : 147 - 150
  • [7] Electromagnetic Wave Propagation in the Turbulent Atmosphere With an Anisotropic Exponent of the Spectrum
    Dakar, Elad
    Golbraikh, Ephim
    Kopeika, Natan
    Zilberman, Arkadi
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2017, 65 (10) : 5654 - 5657
  • [8] The Behavior of Electromagnetic Wave Propagation in Photonic Crystals with or without a Defect
    Basmaci, Ayse N.
    APPLIED COMPUTATIONAL ELECTROMAGNETICS SOCIETY JOURNAL, 2021, 36 (06): : 632 - 641
  • [9] Pseudo-Hermiticity and electromagnetic wave propagation: The case of anisotropic and lossy media
    Mostafazadeh, Ali
    Scolarici, Giuseppe
    PHYSICS LETTERS A, 2010, 374 (24) : 2401 - 2405
  • [10] Nonlinear wave propagation and spatial solitons in nematic liquid crystals
    Assanto, G
    Peccianti, M
    Brzdakiewicz, KA
    De Luca, A
    Umeton, C
    JOURNAL OF NONLINEAR OPTICAL PHYSICS & MATERIALS, 2003, 12 (02) : 123 - 134