As a new acaricide, cyflumetofen can effectively control Tetranychus, Panonychus, as well as other phytophagous mites. But its risk and the way of genetic and resistant inheritance in mites are not clear. In this study, two cyflumetofen-resistant strains (CyR and YN-CyR) were selected for 104 and 12 generations, and developed 104.7-fold and 25.6-fold resistance, respectively. Three crossing groups (CyR_80 x SS, CyR_104 x SS, YN-CyR x SS) were conducted to explore the resistant inheritance of cyflumetofen in T. cinnabarinus changed along with resistant level or not. The results of reciprocal crosses and backcrosses revealed that the incomplete recessive and multiple genes trait involved in two resistant strains. The different stage of resistance also has a same genetic trait. A cross-resistance study revealed that there was no cross-resistance between cyflumetofen and other four acaricides including avermectin, fenpropathrin, propargite and bifenazate respectively, but the cross-resistance to pyridaben reached a high level with 63.8-fold, which indicates an underlying mechanism that can both mediate cyflumetofen- and pyridaben-resistance in T. cinnabarinus.