Backpropagation of an image similarity metric for Autoassociative Neural Networks

被引:1
作者
Kropas-Hughes, CV
Rogers, SK
Oxley, ME
Kabrisky, M
机构
[1] USAF, Res Lab, Mat & Mfg Directorate, AFRL,MLMR, Wright Patterson AFB, OH 45433 USA
[2] Qualia Comp Inc, Beavercreek, OH USA
[3] USAF, Inst Technol, Dept Math, Wright Patterson AFB, OH 45433 USA
[4] USAF, Inst Technol, Dept Elect Engn, Wright Patterson AFB, OH 45433 USA
关键词
Autoassociative Neural Networks; error function; image compression; visual difference predictor;
D O I
10.1007/s100440050004
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Autoassociative Neural Networks (AANNs) are most commonly used fur image data compression. The goal of an AANN for image data is to have the network output be 'similar' to the input. Most of the research in this area use backpropagation training with Mean-Squared Error (MSE) as the optimisation criteria. This paper presents an alternative error function called the Visual Difference Predictor (VDP) based on concepts from the human-visual system. Using the VDP as the error function provides a criteria to train an AANN more efficiently, and results in faster convergence of the weights, while producing an output image perceived to be very similar by a human observer.
引用
收藏
页码:31 / 38
页数:8
相关论文
共 17 条
[1]   NEURAL NETWORKS AND PRINCIPAL COMPONENT ANALYSIS - LEARNING FROM EXAMPLES WITHOUT LOCAL MINIMA [J].
BALDI, P ;
HORNIK, K .
NEURAL NETWORKS, 1989, 2 (01) :53-58
[2]   LEARNING IN MULTILAYERED NETWORKS USED AS AUTOASSOCIATORS [J].
BIANCHINI, M ;
FRASCONI, P ;
GORI, M .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 1995, 6 (02) :512-515
[3]  
COTTRELL GW, 1989, MODELS COGNITION REV, P1
[4]  
CYBENKO G, 1989, MATH CONTROL SIGNAL, P2
[5]  
Daly Scott, 1993, P179
[6]  
DEMERS D, 1993, NONLINEAR DIMENSIONA
[7]   REPLICATOR NEURAL NETWORKS FOR UNIVERSAL OPTIMAL SOURCE-CODING [J].
HECHTNIELSEN, R .
SCIENCE, 1995, 269 (5232) :1860-1863
[8]  
HECHTNIELSEN R, 1990, NEUROCOMPUTING, P325
[9]   NONLINEAR PRINCIPAL COMPONENT ANALYSIS USING AUTOASSOCIATIVE NEURAL NETWORKS [J].
KRAMER, MA .
AICHE JOURNAL, 1991, 37 (02) :233-243
[10]  
MALTHOUSE EC, 1996, SOME THEORETICAL RES