Hierarchical nonlinear model predictive control of offshore hybrid power systems

被引:3
作者
Hoang, Kiet Tuan [1 ]
Knudsen, Brage Rugstad [2 ]
Imsland, Lars Struen [1 ]
机构
[1] Norwegian Univ Sci & Technol, Dept Engn Cybernet, Trondheim, Norway
[2] SINTEF Energy Res, Trondheim, Norway
来源
IFAC PAPERSONLINE | 2022年 / 55卷 / 07期
关键词
Hierarchical control; Nonlinear predictive control; Industrial applications of optimal control; Power systems; Control of renewable energy resources; ALGORITHM;
D O I
10.1016/j.ifacol.2022.07.488
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents an approach for controlling ofshore hybrid power systems consisting of gas turbines, offshore wind, and batteries for satisfying an exogenous power demand. A hierarchical controller is developed comprising a high-level economic nonlinear model predictive controller that distributes the power demand according to some economic objective, a low-level nonlinear tracking model predictive controller that actuates on the hybrid power system, and a nonlinear moving horizon estimator to estimate the system state. Simulation results and concluding remarks reveal the advantage of such a hierarchical approach for a simple simulation study. Copyright (c) 2022 The Authors. This is an open access article under the CC BY-NC-ND license(https://creativecommons.org/licenses/by-nc-nd/4.0/)
引用
收藏
页码:470 / 476
页数:7
相关论文
共 24 条
  • [1] CasADi: a software framework for nonlinear optimization and optimal control
    Andersson, Joel A. E.
    Gillis, Joris
    Horn, Greg
    Rawlings, James B.
    Diehl, Moritz
    [J]. MATHEMATICAL PROGRAMMING COMPUTATION, 2019, 11 (01) : 1 - 36
  • [2] Bemporad A, 1999, LECT NOTES CONTR INF, V245, P207
  • [3] Bock H., 1984, P 9 IFAC WORLD C BUD, V17, P1603, DOI [10.1016/S1474-6670(17)61205-9, DOI 10.1016/S1474-6670(17)61205-9, 10.1016/S1474-6670, DOI 10.1016/S1474-6670]
  • [4] Findeisen R., 2004, PROC INT S ADV CONTR, P427, DOI DOI 10.1016/S1474-6670(17)38769-4
  • [5] Grunnet J.D., 2010, EUR WIND EN C EXH EW
  • [6] The Potential of Economic MPC for Power Management
    Hovgaard, Tobias Gybel
    Edlund, Kristian
    Jorgensen, John Bagterp
    [J]. 49TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2010, : 7533 - 7538
  • [7] HSL, COLL FORTR COD LARG
  • [8] Koivisto M.J., 2021, ENERGY POL, DOI [10.36227/techrxiv.14806647.v2, DOI 10.1016/J.ENPOL.2022.113382]
  • [9] Hierarchical Distributed Model Predictive Control of Standalone Wind/Solar/Battery Power System
    Kong, Xiaobing
    Liu, Xiangjie
    Ma, Lele
    Lee, Kwang Y.
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2019, 49 (08): : 1570 - 1581
  • [10] A real-time algorithm for moving horizon state and parameter estimation
    Kuehl, Peter
    Diehl, Moritz
    Kraus, Tom
    Schloeder, Johannes P.
    Bock, Hans Georg
    [J]. COMPUTERS & CHEMICAL ENGINEERING, 2011, 35 (01) : 71 - 83