Biomimetic drug nanocarriers prepared by miniemulsion polymerization for near-infrared imaging and photothermal therapy

被引:24
作者
Han, Haijie [1 ]
Zhang, Shimiao [1 ]
Wang, Yin [1 ]
Chen, Tingting [1 ]
Jin, Qiao [1 ]
Chen, Yangjun [1 ]
Li, Zuhong [1 ]
Ji, Jian [1 ]
机构
[1] Zhejiang Univ, Dept Polymer Sci & Engn, Minist Educ, MOE Key Lab Macromol Synth & Functionalizat, Hangzhou 310027, Zhejiang, Peoples R China
基金
中国国家自然科学基金; 高等学校博士学科点专项科研基金;
关键词
Miniemulsion polymerization; Phosphorylcholine; IR-780; Near-infrared imaging; Photothermal therapy; INDOCYANINE-GREEN; THERANOSTIC NANOPARTICLES; DELIVERY; PHOSPHORYLCHOLINE; CHEMOTHERAPY; DENDRIMER; MECHANISM; MICELLES; PLATFORM; RELEASE;
D O I
10.1016/j.polymer.2015.11.022
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Miniemulsion reversible addition-fragmentation chain transfer (RAFT) polymerization was used to synthesize biomimetic poly (2-methacryloyloxyethyl phosphorylcholine)-b-Poly (n-butyl methacrylate) (PMPC-b-PBMA) nanoparticles which were used as nanocarriers to encapsulate theranostic IR-780 molecules. IR-780 endowed the PMPC-b-PBMA nanoparticles with dual functions including tumor near-infrared (NIR) imaging and photothermal therapy (PTT). The IR-780 encapsulated PMPC-b-PBMA (PMPC-b-PBMA/IR-780) nanoparticles showed good monodispersity and significant stability. The photothermal effects and photothermal cytotoxicity of the PMPC-b-PBMA/IR-780 nanoparticles were studied in vitro. High accumulation of the PMPC-b-PBMA/IR-780 nanoparticles in tumor tissue was verified by whole-animal NIR imaging. The resulted IR-780 encapsulated biomimetic nanoparticles can be an alternative safe theranostic agent for imaging-guided cancer treatment. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:255 / 261
页数:7
相关论文
共 41 条
[1]   Supramolecular Nanodevices: From Design Validation to Theranostic Nanomedicine [J].
Cabral, Horacio ;
Nishiyama, Nobuhiro ;
Kataoka, Kazunori .
ACCOUNTS OF CHEMICAL RESEARCH, 2011, 44 (10) :999-1008
[2]   PSMA-Targeted Theranostic Nanoplex for Prostate Cancer Therapy [J].
Chen, Zhihang ;
Penet, Marie-France ;
Nimmagadda, Sridhar ;
Li, Cong ;
Banerjee, Sangeeta R. ;
Winnard, Paul T., Jr. ;
Artemov, Dmitri ;
Glunde, Kristine ;
Pomper, Martin G. ;
Bhujwalla, Zaver M. .
ACS NANO, 2012, 6 (09) :7752-7762
[3]   Hepatocyte-targeted fluorescent nanoparticles based on a polyaspartamide for potential theranostic applications [J].
Craparo, Emanuela Fabiola ;
Licciardi, Mariano ;
Conigliaro, Alice ;
Palumbo, Fabio Salvatore ;
Giammona, Gaetano ;
Alessandro, Riccardo ;
De Leo, Giacomo ;
Cavallaro, Gennara .
POLYMER, 2015, 70 :257-270
[4]  
Dzurinko Victoria L, 2004, Optometry, V75, P743, DOI 10.1016/S1529-1839(04)70234-1
[5]   Molecularly imprinted nanoparticles prepared by miniemulsion polymerization as selective receptors and new carriers for the sustained release of carbamazepine [J].
Esfandyari-Manesh, Mehdi ;
Javanbakht, Mehran ;
Dinarvand, Rassoul ;
Atyabi, Fatemeh .
JOURNAL OF MATERIALS SCIENCE-MATERIALS IN MEDICINE, 2012, 23 (04) :963-972
[6]  
Fang J, 2003, ADV EXP MED BIOL, V519, P29
[7]   Cobalt and nickel nanoparticles fabricated p(NIPAM-co-MAA) microgels for catalytic applications [J].
Farooqi, Zahoor H. ;
Iqbal, Sadia ;
Khan, Shanza Rauf ;
Kanwal, Farah ;
Begum, Robina .
E-POLYMERS, 2014, 14 (05) :313-321
[8]   Polyether based amphiphiles for delivery of active components [J].
Gupta, Shilpi ;
Tyagi, Rahul ;
Parmar, Virinder S. ;
Sharma, Sunil K. ;
Haag, Rainer .
POLYMER, 2012, 53 (15) :3053-3078
[9]   Cell-specific delivery of polymeric nanoparticles to carbohydrate-tagging cells [J].
Iwasaki, Yasuhiko ;
Maie, Haruki ;
Akiyoshi, Kazunari .
BIOMACROMOLECULES, 2007, 8 (10) :3162-3168
[10]   Zwitterionic phosphorylcholine as a better ligand for stabilizing large biocompatible gold nanoparticles [J].
Jin, Qiao ;
Xu, Jian-Ping ;
Ji, Jian ;
Shen, Jia-Cong .
CHEMICAL COMMUNICATIONS, 2008, (26) :3058-3060