Contextuality and Wigner-function negativity in qubit quantum computation

被引:76
作者
Raussendorf, Robert [1 ]
Browne, Dan E. [2 ]
Delfosse, Nicolas [3 ,4 ,5 ]
Okay, Cihan [6 ]
Bermejo-Vega, Juan [7 ,8 ]
机构
[1] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada
[2] UCL, Dept Phys & Astron, Gower St, London WC1E 6BT, England
[3] Univ Sherbrooke, Dept Phys, Sherbrooke, PQ J1K 2R1, Canada
[4] CALTECH, IQIM, Pasadena, CA 91125 USA
[5] Univ Calif Riverside, Dept Phys & Astron, Riverside, CA 92521 USA
[6] Univ Western Ontario, Dept Math, London, ON N6A 5B7, Canada
[7] Max Planck Inst Quantum Opt, Theory Div, D-85748 Garching, Germany
[8] Free Univ Berlin, Dahlem Ctr Complex Quantum Syst, D-14195 Berlin, Germany
基金
加拿大自然科学与工程研究理事会;
关键词
HIDDEN-VARIABLES; ERROR-CORRECTION; STATES; MECHANICS; COMPUTER; THEOREMS;
D O I
10.1103/PhysRevA.95.052334
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We describe schemes of quantum computation with magic states on qubits for which contextuality and negativity of the Wigner function are necessary resources possessed by the magic states. These schemes satisfy a constraint. Namely, the non-negativity of Wigner functions must be preserved under all available measurement operations. Furthermore, we identify stringent consistency conditions on such computational schemes, revealing the general structure by which negativity of Wigner functions, hardness of classical simulation of the computation, and contextuality are connected.
引用
收藏
页数:22
相关论文
共 51 条
  • [1] Quantum computing, postselection, and probabilistic polynomial-time
    Aaronson, S
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2005, 461 (2063): : 3473 - 3482
  • [2] Aaronson S, 2011, ACM S THEORY COMPUT, P333
  • [3] The sheaf-theoretic structure of non-locality and contextuality
    Abramsky, Samson
    Brandenburger, Adam
    [J]. NEW JOURNAL OF PHYSICS, 2011, 13
  • [4] A Combinatorial Approach to Nonlocality and Contextuality
    Acin, Antonio
    Fritz, Tobias
    Leverrier, Anthony
    Sainz, Belen
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2015, 334 (02) : 533 - 628
  • [5] Operator quantum error-correcting subsystems for self-correcting quantum memories
    Bacon, D
    [J]. PHYSICAL REVIEW A, 2006, 73 (01):
  • [6] ON PROBLEM OF HIDDEN VARIABLES IN QUANTUM MECHANICS
    BELL, JS
    [J]. REVIEWS OF MODERN PHYSICS, 1966, 38 (03) : 447 - &
  • [7] Bermejo-Vega J., ARXIV161008529
  • [8] Topological subsystem codes
    Bombin, H.
    [J]. PHYSICAL REVIEW A, 2010, 81 (03):
  • [9] Universal quantum computation with the ν=5/2 fractional quantum Hall state
    Bravyi, S
    [J]. PHYSICAL REVIEW A, 2006, 73 (04):
  • [10] Universal quantum computation with ideal Clifford gates and noisy ancillas
    Bravyi, S
    Kitaev, A
    [J]. PHYSICAL REVIEW A, 2005, 71 (02):