Integral points on the modular curves X0(p)

被引:1
|
作者
Cai, Yulin [1 ]
机构
[1] Univ Bordeaux, Inst Math Bordeaux, 351 Cours Liberat, F-33405 Talence, France
关键词
Integral point; Modular curve; Etale morphism; Chevalley-Weil principle;
D O I
10.1016/j.jnt.2020.06.003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we give an explicit bound for the height of integral points on X-0(p) by using a very explicit version of the Chevalley-Weil principle. We improve the bound given by Sha in [12]. (c) 2020 Published by Elsevier Inc.
引用
收藏
页码:211 / 221
页数:11
相关论文
共 50 条
  • [41] Automorphisms of the modular curve - Automorphisms of the modular curve X(p) in positive characteristic
    Bending, P
    Camina, A
    Guralnick, R
    PROGRESS IN GALOIS THEORY, 2005, 12 : 25 - 37
  • [42] The integral points on elliptic curves y2 = x3 + (36n2 − 9)x − 2(36n2 − 5)
    Hai Yang
    Ruiqin Fu
    Czechoslovak Mathematical Journal, 2013, 63 : 375 - 383
  • [43] Cuspidal class number of the tower of modular curves X1(Npn)
    Hae-Sang Sun
    Mathematische Annalen, 2010, 348 : 909 - 927
  • [44] Cuspidal class number of the tower of modular curves X1(Npn)
    Sun, Hae-Sang
    MATHEMATISCHE ANNALEN, 2010, 348 (04) : 909 - 927
  • [45] The integral points on elliptic curves y2 = x3+(36n2- 9)x-2(36n2-5)
    Yang, Hai
    Fu, Ruiqin
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2013, 63 (02) : 375 - 383
  • [46] Integral points on the elliptic curve y2 = x3+27x-62
    Karaatli, Olcay
    Keskin, Refik
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2013,
  • [47] Integral points on the elliptic curve y2=x3+27x−62
    Olcay Karaatlı
    Refik Keskin
    Journal of Inequalities and Applications, 2013 (1)
  • [48] The cuspidal class number formula for the modular curves X1 (22n+1)
    Takagi, Toshikazu
    JOURNAL OF ALGEBRA, 2008, 319 (09) : 3535 - 3566
  • [49] Integral points on the elliptic curve Epq: y2 = x3 + (pq − 12) x − 2(pq − 8)
    Teng Cheng
    Qingzhong Ji
    Hourong Qin
    Indian Journal of Pure and Applied Mathematics, 2019, 50 : 343 - 352
  • [50] The Integral Points on the Elliptic Curve y2=3mx(x2-8)
    Fei, Wan
    Zhao, Jianhong
    2ND INTERNATIONAL CONFERENCE ON APPLIED MATHEMATICS, MODELLING, AND INTELLIGENT COMPUTING (CAMMIC 2022), 2022, 12259