Integral points on the modular curves X0(p)

被引:1
作者
Cai, Yulin [1 ]
机构
[1] Univ Bordeaux, Inst Math Bordeaux, 351 Cours Liberat, F-33405 Talence, France
关键词
Integral point; Modular curve; Etale morphism; Chevalley-Weil principle;
D O I
10.1016/j.jnt.2020.06.003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we give an explicit bound for the height of integral points on X-0(p) by using a very explicit version of the Chevalley-Weil principle. We improve the bound given by Sha in [12]. (c) 2020 Published by Elsevier Inc.
引用
收藏
页码:211 / 221
页数:11
相关论文
共 14 条
[1]   EFFECTIVE ANALYSIS OF INTEGRAL POINTS ON ALGEBRAIC-CURVES [J].
BILU, Y .
ISRAEL JOURNAL OF MATHEMATICS, 1995, 90 (1-3) :235-252
[2]  
Bilu YF, 2002, PANORAMA IN NUMBER THEORY OR THE VIEW FROM BAKER'S GARDEN, P73
[3]   Quantitative Chevalley-Weil theorem for curves [J].
Bilu, Yuri ;
Strambi, Marco ;
Surroca, Andrea .
MONATSHEFTE FUR MATHEMATIK, 2013, 171 (01) :1-32
[4]   Effective Siegel's theorem for modular curves [J].
Bilu, Yuri ;
Illengo, Marco .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2011, 43 :673-688
[5]  
Bombieri E, 2006, HEIGHTS DIOPHANTINE, V4
[6]  
Cai Y, 2019, ARXIV190911307
[7]  
Diamond F, 2005, 1 COURSE MODULAR FOR, V228
[8]   THEORIES OF FINITENESS FOR ABELIAN-VARIETIES OVER NUMBER-FIELDS [J].
FALTINGS, G .
INVENTIONES MATHEMATICAE, 1983, 73 (03) :349-366
[9]  
Grothendieck A, 1971, LECT NOTE MATH, V224
[10]  
HINDRY M, 2000, GRAD TEXT M, V201, P1