On the trees of quantum fields

被引:15
作者
Brouder, C [1 ]
机构
[1] Univ Paris 06, CNRS, UMR 7590, Lab Mineral Cristallog,IPGP, F-75252 Paris 05, France
来源
EUROPEAN PHYSICAL JOURNAL C | 2000年 / 12卷 / 03期
关键词
D O I
10.1007/s100529900234
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
The solution of some equations involving functional derivatives is written as a series indexed by planar binary trees. The terms of the series are given by an explicit recursive formula. Some algebraic properties of these series are investigated. Several examples are treated in the case of quantum electrodynamics: the complete fermion and photon propagators, the two-body Green function and the one-body Green function in the presence of an external source, the complete vacuum polarization: the electron self-energy and the irreducible vertex.
引用
收藏
页码:535 / 549
页数:15
相关论文
共 27 条
[1]   The GW method [J].
Aryasetiawan, F ;
Gunnarsson, O .
REPORTS ON PROGRESS IN PHYSICS, 1998, 61 (03) :237-312
[2]  
Bogoliubov N.N., 1959, INTRO THEORY QUANTIZ
[3]   Renormalization automated by Hopf algebra [J].
Broadhurst, DJ ;
Kreimer, D .
JOURNAL OF SYMBOLIC COMPUTATION, 1999, 27 (06) :581-600
[4]   Runge-Kutta methods and renormalization [J].
Brouder, C .
EUROPEAN PHYSICAL JOURNAL C, 2000, 12 (03) :521-534
[5]  
Butcher J. C., 1987, The Numerical Analysis of Ordinary Differential Equations: Runge-Kutta and General Linear Methods
[6]  
BUTCHER JC, 1972, MATH COMPUT, V26, P79, DOI 10.1090/S0025-5718-1972-0305608-0
[7]   Lessons from quantum field theory: Hopf algebras and spacetime geometries [J].
Connes, A ;
Kreimer, D .
LETTERS IN MATHEMATICAL PHYSICS, 1999, 48 (01) :85-96
[8]   Hopf algebras, renormalization and noncommutative geometry [J].
Connes, A ;
Kreimer, D .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1998, 199 (01) :203-242
[9]  
CoNWAY J. H., 1996, The Book of Numbers
[10]  
FRABETTI A, 1999, IN PRESS J ALG COMBI