EM algorithm for stochastic hybrid systems

被引:0
作者
Fukasawa, Masaaki [1 ]
机构
[1] Osaka Univ, Grad Sch Engn Sci, Osaka 5608531, Japan
关键词
Partial observation; Filtering; Stochastic hybrid system;
D O I
10.1007/s11203-020-09231-3
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A stochastic hybrid system, also known as a switching diffusion, is a continuous-time Markov process with state space consisting of discrete and continuous parts. We consider parametric estimation of the Q matrix for the discrete state transitions and of the drift coefficient for the diffusion part. First, we derive the likelihood function under the complete observation of a sample path in continuous-time. Then, extending a finite-dimensional filter for hidden Markov models developed by Elliott et al. (Hidden Markov Models, Springer, 1995) to stochastic hybrid systems, we derive the likelihood function and the EM algorithm under a partial observation where the continuous state is monitored continuously in time, while the discrete state is unobserved.
引用
收藏
页码:223 / 239
页数:17
相关论文
共 16 条
[1]  
Bain A, 2009, STOCH MOD APPL PROBA, V60, P1, DOI 10.1007/978-0-387-76896-0_1
[2]   PARAMETER-ESTIMATION OF PARTIALLY OBSERVED CONTINUOUS-TIME STOCHASTIC-PROCESSES VIA THE EM ALGORITHM [J].
DEMBO, A ;
ZEITOUNI, O .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1986, 23 (01) :91-113
[3]  
Elliott R., 1995, HIDDEN MARKOV MODELS
[4]   Direct visualization of human myosin II force generation using DNA origami-based thick filaments [J].
Fujita, Keisuke ;
Ohmachi, Masashi ;
Ikezaki, Keigo ;
Yanagida, Toshio ;
Iwaki, Mitsuhiro .
COMMUNICATIONS BIOLOGY, 2019, 2 (1)
[5]   Ergodic control of switching diffusions [J].
Ghosh, MK ;
Arapostathis, A ;
Marcus, SI .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1997, 35 (06) :1952-1988
[6]   A model for stochastic hybrid systems with application to communication networks [J].
Hespanha, JP .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2005, 62 (08) :1353-1383
[7]  
IBRAGIMOV I. A., 1981, Appl. Math., V16, DOI [10.1007/978-1-4899-0027-2, DOI 10.1007/978-1-4899-0027-2]
[8]  
Jacod J., 2003, GRUNDLEHREN MATH WIS, V288
[9]  
Li XF, 2017, EURASIP J BIOINFORM, DOI [10.1186/s13637-017-0061, 10.1186/s13637-017-0061-5]
[10]  
Liptser R., 2001, STAT RANDOM PROCESSE, P161, DOI DOI 10.1007/978-3-662-10028-8