Minimal tetrahedralizations of a class of polyhedra

被引:1
|
作者
Yang, BT [1 ]
Wang, CA
机构
[1] Univ Regina, Dept Comp Sci, Regina, SK S4S 0A2, Canada
[2] Mem Univ Newfoundland, Dept Comp Sci, St Johns, NF A1B 3X5, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
computational geometry; polyhedron; tetrahedralization;
D O I
10.1023/B:JOCO.0000038910.06360.0a
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Given a simple polyhedron P in the three dimensional Euclidean space, different tetrahedralizations of P may contain different numbers of tetrahedra. The minimal tetrahedralization is a tetrahedralization with the minimum number of tetrahedra. In this paper, we present some properties of the graph of polyhedra. Then we identify a class of polyhedra and show that this kind of polyhedra can be minimally tetrahedralized in O(n(2)) time.
引用
收藏
页码:241 / 265
页数:25
相关论文
共 50 条
  • [31] Voronoi diagrams with barriers and on polyhedra for minimal path planning
    Franklin, W. Randolph
    Akman, Varol
    Verrilli, Colin
    VISUAL COMPUTER, 1985, 1 (02): : 133 - 150
  • [32] On the Construction of Planar Embedding for a Class of Orthogonal Polyhedra
    Karmakar, Nilanjana
    Biswas, Arindam
    Nandy, Subhas C.
    Bhattacharya, Bhargab B.
    COMBINATORIAL IMAGE ANALYSIS, IWCIA 2022, 2023, 13348 : 84 - 104
  • [33] ON A REMARKABLE CLASS OF POLYHEDRA IN COMPLEX HYPERBOLIC SPACE
    MOSTOW, GD
    PACIFIC JOURNAL OF MATHEMATICS, 1980, 86 (01) : 171 - 276
  • [34] On refinement of constrained Delaunay tetrahedralizations
    Si, Hang
    PROCEEDINGS OF THE 15TH INTERNATIONAL MESHING ROUNDTABLE, 2006, : 509 - +
  • [35] Hamiltonian tetrahedralizations with Steiner points
    Escalona F.
    Fabila-Monroy R.
    Urrutia J.
    Boletín de la Sociedad Matemática Mexicana, 2017, 23 (2) : 537 - 547
  • [36] Minimal half-spaces and external representation of tropical polyhedra
    Gaubert, Stephane
    Katz, Ricardo D.
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2011, 33 (03) : 325 - 348
  • [37] Minimal half-spaces and external representation of tropical polyhedra
    Stéphane Gaubert
    Ricardo D. Katz
    Journal of Algebraic Combinatorics, 2011, 33 : 325 - 348
  • [38] DELAUNAY TETRAHEDRALIZATIONS: HONOR DEGENERATED CASES
    Verbree, Edward
    5TH INTERNATIONAL CONFERENCE ON 3D GEOINFORMATION, 2010, 38-4 (W15): : 69 - 72
  • [39] PLANE AND STEREOGRAPHIC PROJECTIONS OF CONVEX POLYHEDRA FROM MINIMAL INFORMATION
    COLE, AJ
    COMPUTER JOURNAL, 1966, 9 (01): : 27 - &
  • [40] CLASS OF FACET PRODUCING GRAPHS FOR VERTEX PACKING POLYHEDRA
    TROTTER, LE
    DISCRETE MATHEMATICS, 1975, 12 (04) : 373 - 388