ON UPPER FUNCTIONS FOR ANOMALOUS DIFFUSIONS GOVERNED BY TIME-VARYING ORNSTEIN-UHLENBECK PROCESS

被引:3
作者
Palamarchuk, E. S. [1 ,2 ]
机构
[1] Russian Acad Sci, Cent Econ & Math Inst, Moscow, Russia
[2] Natl Res Univ Higher Sch Econ, Moscow, Russia
关键词
time-varying Ornstein-Uhlenbeck process; upper function; anomalous diffusion; the law of the iterated logarithm; STOCHASTIC DIFFERENTIAL-EQUATION; OPTIMALITY;
D O I
10.1137/S0040585X97T989453
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We obtain upper functions that serve as almost sure asymptotic upper bounds for a displacement process given by an integrated time-varying Ornstein-Uhlenbeck process. The form of upper functions depends on the characteristics (the stability rate and the diffusion coefficient) of a stochastic linear differential equation. We introduce the notion of anomalous diffusion related to behavior of upper functions and compare the results of diffusion classification (normal diffusion, subdiffusion, and superdiffusion) with those obtained on the basis of mean square displacements.
引用
收藏
页码:209 / 228
页数:20
相关论文
共 22 条
[1]   Integrated stationary Ornstein-Uhlenbeck process, and double integral processes [J].
Abundo, Mario ;
Pirozzi, Enrica .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2018, 494 :265-275
[2]  
[Anonymous], THEORY RANDOM PROCES
[3]  
[Anonymous], 1967, Stationary and related stochastic processes
[4]  
Bassan B, 1996, APPL STOCH MODEL D A, V12, P63, DOI 10.1002/(SICI)1099-0747(199606)12:2<63::AID-ASM277>3.0.CO
[5]  
2-F
[6]   On stochastic optimality for a linear controller with attenuating disturbances [J].
Belkina, T. A. ;
Palamarchuk, E. S. .
AUTOMATION AND REMOTE CONTROL, 2013, 74 (04) :628-641
[7]   On a stochastic optimality of the feedback control in the lqg-problem [J].
Belkina, TA ;
Kabanov, YM ;
Presman, EL .
THEORY OF PROBABILITY AND ITS APPLICATIONS, 2003, 48 (04) :592-603
[8]  
Cox D. R., 2017, THEORY STOCHASTIC PR, DOI 10.1201/9780203719152
[9]   WEAK-CONVERGENCE OF AN AUTOREGRESSIVE PROCESS USED IN MODELING POPULATION-GROWTH [J].
CUMBERLAND, WG ;
SYKES, ZM .
JOURNAL OF APPLIED PROBABILITY, 1982, 19 (02) :450-455
[10]   Inference for observations of integrated diffusion processes [J].
Ditlevsen, S ;
Sorensen, M .
SCANDINAVIAN JOURNAL OF STATISTICS, 2004, 31 (03) :417-429