Modifying Thermal Transport in Colloidal Nanocrystal Solids with Surface Chemistry

被引:36
作者
Liu, Minglu [1 ]
Ma, Yuanyu [1 ]
Wang, Robert Y. [1 ]
机构
[1] Arizona State Univ, Sch Engn Matter Transport & Energy, Tempe, AZ 85287 USA
基金
美国国家科学基金会;
关键词
colloidal nanocrystal; ligand; nanocrystal solid; thermal conductivity; thermal transport; TUNABLE MELTING TEMPERATURE; SELF-ASSEMBLED MONOLAYERS; PBS NANOCRYSTALS; HEAT-TRANSPORT; QUANTUM; CONDUCTIVITY; PHOTODETECTORS; NANOCOMPOSITES; THERMOPOWER; COMPOSITES;
D O I
10.1021/acsnano.5b05085
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We present a systematic study on the effect of surface chemistry on thermal transport in colloidal nanocrystal (NC) solids. Using PbS NCs as a model system, we vary ligand binding group (thiol, amine, and atomic halides), ligand length (ethanedithiol, butanedithiol, hexanedithiol, and octanedithiol), and NC diameter (3.3-8.2 nm). Our experiments reveal several findings: (i) The ligand choice can vary the NC solid thermal conductivity by up to a factor of 2.5. (ii) The ligand binding strength to the NC core does not significantly impact thermal conductivity. (iii) Reducing the ligand length can decrease the interparticle distance, which increases thermal conductivity. (iv) Increasing the NC diameter increases thermal conductivity. (v) The effect of surface chemistry can exceed the effect of NC diameter and becomes more pronounced as NC diameter decreases. By combining these trends, we demonstrate that the thermal conductivity of NC solids can be varied by an overall factor of 4, from similar to 0.1-0.4 W/m-K. We complement these findings with effective medium approximation modeling and identify thermal transport in the ligand matrix as the rate-limiter for thermal transport. By combining these modeling results with our experimental observations, we conclude that future efforts to increase thermal conductivity in NC solids should focus on the ligand ligand interface between neighboring NCs.
引用
收藏
页码:12079 / 12087
页数:9
相关论文
共 55 条
  • [1] Thermal conductivity of C-60 at pressures up to 1 GPa and temperatures in the 50-300 K range
    Andersson, O
    Soldatov, A
    Sundqvist, B
    [J]. PHYSICAL REVIEW B, 1996, 54 (05) : 3093 - 3100
  • [2] Data reduction in 3ω method for thin-film thermal conductivity determination
    Borca-Tasciuc, T
    Kumar, AR
    Chen, G
    [J]. REVIEW OF SCIENTIFIC INSTRUMENTS, 2001, 72 (04) : 2139 - 2147
  • [3] Energy Level Modification in Lead Sulfide Quantum Dot Thin Films through Ligand Exchange
    Brown, Patrick R.
    Kim, Donghun
    Lunt, Richard R.
    Zhao, Ni
    Bawendi, Moungi G.
    Grossman, Jeffrey C.
    Bulovic, Vladimir
    [J]. ACS NANO, 2014, 8 (06) : 5863 - 5872
  • [4] Size-dependent extinction coefficients of PbS quantum dots
    Cademartiri, Ludovico
    Montanari, Erica
    Calestani, Gianluca
    Migliori, Andrea
    Guagliardi, Antonietta
    Ozin, Geoffrey A.
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2006, 128 (31) : 10337 - 10346
  • [5] THERMAL-CONDUCTIVITY MEASUREMENT FROM 30-K TO 750-K - THE 3-OMEGA METHOD
    CAHILL, DG
    [J]. REVIEW OF SCIENTIFIC INSTRUMENTS, 1990, 61 (02) : 802 - 808
  • [6] Carl L.Y., 1995, Handbook of Thermal Conductivity, V3, P1
  • [7] High-performance crosslinked colloidal quantum-dot light-emitting diodes
    Cho, Kyung-Sang
    Lee, Eun Kyung
    Joo, Won-Jae
    Jang, Eunjoo
    Kim, Tae-Ho
    Lee, Sang Jin
    Kwon, Soon-Jae
    Han, Jai Yong
    Kim, Byung-Ki
    Choi, Byoung Lyong
    Kim, Jong Min
    [J]. NATURE PHOTONICS, 2009, 3 (06) : 341 - 345
  • [8] Chuang CHM, 2014, NAT MATER, V13, P796, DOI [10.1038/nmat3984, 10.1038/NMAT3984]
  • [9] Solution-processed, high-performance light-emitting diodes based on quantum dots
    Dai, Xingliang
    Zhang, Zhenxing
    Jin, Yizheng
    Niu, Yuan
    Cao, Hujia
    Liang, Xiaoyong
    Chen, Liwei
    Wang, Jianpu
    Peng, Xiaogang
    [J]. NATURE, 2014, 515 (7525) : 96 - 99
  • [10] Large-Scale Colloidal Synthesis of Non-Stoichiometric Cu2ZnSnSe4 Nanocrystals for Thermoelectric Applications
    Fan, Feng-Jia
    Wang, Yi-Xiu
    Liu, Xiao-Jing
    Wu, Liang
    Yu, Shu-Hong
    [J]. ADVANCED MATERIALS, 2012, 24 (46) : 6158 - 6163