Revisiting Uncertainty Relation via Random Observables

被引:0
作者
Zhang, Lin [1 ]
Jiang, Yanjun [1 ]
Luo, Laizhen [2 ]
Jing, Yangping [1 ]
机构
[1] Hangzhou Dianzi Univ, Inst Math, Hangzhou 310018, Peoples R China
[2] Harbin Univ Sci & Technol, Dept Math, Harbin 150080, Peoples R China
基金
中国国家自然科学基金;
关键词
Uncertainty relation; Random observable; Gaussian Unitary Ensemble (GUE); Wishart ensemble;
D O I
10.1007/s10773-020-04608-9
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The purpose of this paper is to give a perspective about the Robertson-Schrodinger uncertainty relation via random observables instead of random quantum state in this relation. Specifically, we randomize two observables by choosing them from Gaussian Unitary Ensemble (GUE) and Wishart ensemble, respectively, with a fixed quantum state, and then calculate the average of difference between uncertainty-product and its lower bound in the Robertson-Schrodinger uncertainty relation. Then we consider such average how distribute as to that given quantum state. By doing so, we can figure out how the gap between uncertainty-product and its lower bound becomes larger when increasing the dimensions.
引用
收藏
页码:2473 / 2487
页数:15
相关论文
共 26 条
[1]   Tightening the entropic uncertainty bound in the presence of quantum memory [J].
Adabi, F. ;
Salimi, S. ;
Haseli, S. .
PHYSICAL REVIEW A, 2016, 93 (06)
[2]   Geometric uncertainty relation for mixed quantum states [J].
Andersson, Ole ;
Heydari, Hoshang .
JOURNAL OF MATHEMATICAL PHYSICS, 2014, 55 (04)
[3]  
[Anonymous], ARXIV14083782
[4]   Entropic uncertainty and measurement reversibility [J].
Berta, Mario ;
Wehner, Stephanie ;
Wilde, Mark M. .
NEW JOURNAL OF PHYSICS, 2016, 18
[5]   Entanglement-assisted guessing of complementary measurement outcomes [J].
Berta, Mario ;
Coles, Patrick J. ;
Wehner, Stephanie .
PHYSICAL REVIEW A, 2014, 90 (06)
[6]   The uncertainty principle in the presence of quantum memory [J].
Berta, Mario ;
Christandl, Matthias ;
Colbeck, Roger ;
Renes, Joseph M. ;
Renner, Renato .
NATURE PHYSICS, 2010, 6 (09) :659-662
[7]   Variance-based uncertainty relations for incompatible observables [J].
Chen, Bin ;
Cao, Ning-Ping ;
Fei, Shao-Ming ;
Long, Gui-Lu .
QUANTUM INFORMATION PROCESSING, 2016, 15 (09) :3909-3917
[8]   Entropic uncertainty relations and their applications [J].
Coles, Patrick J. ;
Berta, Mario ;
Tomamichel, Marco ;
Wehner, Stephanie .
REVIEWS OF MODERN PHYSICS, 2017, 89 (01)
[9]   Equivalence of wave-particle duality to entropic uncertainty [J].
Coles, Patrick J. ;
Kaniewski, Jedrzej ;
Wehner, Stephanie .
NATURE COMMUNICATIONS, 2014, 5
[10]   Entropic uncertainty relations and entanglement -: art. no. 022316 [J].
Gühne, O ;
Lewenstein, M .
PHYSICAL REVIEW A, 2004, 70 (02) :022316-1