Molecular Imaging of the Breast

被引:6
作者
Birdwell, Robyn L. [1 ,2 ]
Mountford, Carolyn E. [2 ,3 ]
Iglehart, J. Dirk [4 ,5 ]
机构
[1] Brigham & Womens Hosp, Dept Radiol, Div Breast Imaging, Boston, MA 02129 USA
[2] Harvard Univ, Sch Med, Boston, MA 02129 USA
[3] Brigham & Womens Hosp, Ctr Clin Spectroscopy, Dept Radiol, Boston, MA 02129 USA
[4] Brigham & Womens Hosp, Dept Surg, Boston, MA 02129 USA
[5] Dana Farber Canc Inst, Dept Canc Biol, Boston, MA 02115 USA
关键词
breast cancer; breast cancer screening; molecular imaging; MR spectroscopy; nuclear medicine; PROTON-MAGNETIC-RESONANCE; GENE-EXPRESSION PATTERNS; FINE-NEEDLE BIOPSY; IN-VIVO; MR SPECTROSCOPY; H-1; MRS; CANCER; LESIONS; DIAGNOSIS; CHOLINE;
D O I
10.2214/AJR.09.3079
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
OBJECTIVE. Personalized health care centers around the concept that each tumor and its host environment is unique; optimal treatment and expected response for any given woman presenting with a newly diagnosed breast cancer differ from the care and response of other women. CONCLUSION. As more is understood about the molecular subtypes of breast cancer and as development of targeted therapies progresses, the possibility of earlier treatment response assessment and even improved detection will be realized.
引用
收藏
页码:367 / 376
页数:10
相关论文
共 63 条
  • [1] Aboagye EO, 1999, CANCER RES, V59, P80
  • [2] Color-Coded Fluorescent Protein Imaging of Angiogenesis: The AngioMouse® Models
    Amoh, Yasuyuki
    Katsuoka, Kensei
    Hoffman, Robert M.
    [J]. CURRENT PHARMACEUTICAL DESIGN, 2008, 14 (36) : 3810 - 3819
  • [3] [Anonymous], 1990, Principles of Nuclear Magnetic Resonance in One and Two Dimensions
  • [4] In Vivo Investigation of Breast Cancer Progression by Use of an Internal Control
    Baeten, John
    Haller, Jodi
    Shih, Helen
    Ntziachristos, Vasilis
    [J]. NEOPLASIA, 2009, 11 (03): : 220 - 227
  • [5] BARRY P, 1998, OESOPHAGOGASTRIC JUN, P1122
  • [6] Proton MR spectroscopy with choline peak as malignancy marker improves positive predictive value for breast cancer diagnosis: Preliminary study
    Bartella, L
    Morris, EA
    Dershaw, DD
    Liberman, L
    Thakur, SB
    Moskowitz, C
    Guido, J
    Huang, W
    [J]. RADIOLOGY, 2006, 239 (03) : 686 - 692
  • [7] MR-determined metabolic phenotype of breast cancer in prediction of lymphatic spread, grade, and hormone status
    Bathen, Tone F.
    Jensen, Line R.
    Sitter, Beathe
    Fjoesne, Hans E.
    Halgunset, Jostein
    Axelson, David E.
    Gribbestad, Ingrid S.
    Lundgren, Steinar
    [J]. BREAST CANCER RESEARCH AND TREATMENT, 2007, 104 (02) : 181 - 189
  • [8] High-resolution fluorodeoxyglucose positron emission tomography with compression ("positron emission mammography") is highly accurate in depicting primary breast cancer
    Berg, Wendie A.
    Weinberg, Irving N.
    Narayanan, Deepa
    Lobrano, Mary E.
    Ross, Eric
    Amodei, Laura
    Tafra, Lorraine
    Adler, Lee P.
    Uddo, Joseph
    Stein, William, III
    Levine, Edward A.
    [J]. BREAST JOURNAL, 2006, 12 (04) : 309 - 323
  • [9] Computed tomography for imaging the breast
    Boone, John M.
    Kwan, Alex L. C.
    Yang, Kai
    Burkett, George W.
    Lindfors, Karen K.
    Nelson, Thomas R.
    [J]. JOURNAL OF MAMMARY GLAND BIOLOGY AND NEOPLASIA, 2006, 11 (02) : 103 - 111
  • [10] Breast-specific gamma imaging as an adjunct imaging modality for the diagnosis of breast cancer
    Brem, Rachel F.
    Floerke, Angelique C.
    Rapelyea, Jocelyn A.
    Teal, Christine
    Kelly, Tricia
    Mathur, Vivek
    [J]. RADIOLOGY, 2008, 247 (03) : 651 - 657