Gas bubble removal in alkaline water electrolysis with utilization of pressure swings

被引:44
作者
Bakker, Mischa M. [1 ]
Vermaas, David A. [1 ,2 ]
机构
[1] Delft Univ Technol, Dept Chem Engn, Van der Maasweg 9, NL-2628 CJ Delft, Netherlands
[2] AquaBattery BV, Lijnbaan 3C, NL-2352 CK Leiderdorp, Netherlands
关键词
Water electrolysis; Gas bubbles; Hydrogen evolution; Electrolyte resistance; Process intensification; HYDROGEN-PRODUCTION; OHMIC RESISTANCE; ELECTRODES; BEHAVIOR; INTENSIFICATION; EFFICIENCY; EVOLUTION;
D O I
10.1016/j.electacta.2019.06.049
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The energy consumption in hydrogen production through water electrolysis remains a major bottleneck for practical application. Gas bubbles that inevitably form during water electrolysis significantly increase the overall cell resistance; thereby reducing the energy efficiency. This added bubble resistance may be mitigated by enhancing the bubble removal in the system. In this work, we study the accelerated growth and detachment process of gas bubbles on electrodes, i.e. the screening layer, via pressure swings. The influence of these pressure swings on the cell voltage was experimentally investigated, by imposing temporarily low system pressure. We demonstrate that pressure swings are a means to compensate the cell voltage accumulation caused by the screening layer build up (i.e. a relaxation process). A reduction of approximately 0.1 V is realized this way, with the largest energy saving when a pressure swing is applied every 100-300 s (equivalent to a cumulative H-2 production of 0.03-0.09 mmol/cm(2)). The reduction of cell voltage due to pressure swings increases nearly linearly with increasing current density. Furthermore, investigation of the voltage-time curves indicates a synergistic effect between bubbles for its release. It is concluded that the pressure swings are a means to effectively remove gas bubbles from the screening layer. (C) 2019 Published by Elsevier Ltd.
引用
收藏
页码:148 / 157
页数:10
相关论文
共 39 条
[1]  
Bertuccioli L., 2014, Fuel cells and hydrogen joint undertaking, P83
[2]   THE EFFECT OF THE GAS VOID DISTRIBUTION ON THE OHMIC RESISTANCE DURING WATER-ELECTROLYTES [J].
BONGENAARSCHLENTER, BE ;
JANSSEN, LJJ ;
VANSTRALEN, SJD ;
BARENDRECHT, E .
JOURNAL OF APPLIED ELECTROCHEMISTRY, 1985, 15 (04) :537-548
[3]   Intensification of water electrolysis in a centrifugal field [J].
Cheng, H ;
Scott, K ;
Ramshaw, C .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2002, 149 (11) :D172-D177
[4]   GAS BUBBLE BEHAVIOR AND ELECTROLYTE RESISTANCE DURING WATER ELECTROLYSIS [J].
DEJONGE, RM ;
BARENDRECHT, E ;
JANSSEN, LJJ ;
VANSTRALEN, SJD .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 1982, 7 (11) :883-894
[5]   Fluctuations of concentration overpotential generated at gas-evolving electrodes [J].
Gabrielli, C ;
Huet, F ;
Nogueira, RP .
ELECTROCHIMICA ACTA, 2005, 50 (18) :3726-3736
[6]   A review of specific conductivities of potassium hydroxide solutions for various concentrations and temperatures [J].
Gilliam, R. J. ;
Graydon, J. W. ;
Kirk, D. W. ;
Thorpe, S. J. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2007, 32 (03) :359-364
[7]   Reducing the cost of CO2 capture from flue gases using pressure swing adsorption [J].
Ho, Minh T. ;
Allinson, Guy W. ;
Wiley, Dianne E. .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2008, 47 (14) :4883-4890
[8]   An overview of hydrogen production technologies [J].
Holladay, J. D. ;
Hu, J. ;
King, D. L. ;
Wang, Y. .
CATALYSIS TODAY, 2009, 139 (04) :244-260
[9]   HYDRODYNAMIC MODEL OF STEADY MOVEMENT OF A SOLID/LIQUID/FLUID CONTACT LINE [J].
HUH, C ;
SCRIVEN, LE .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 1971, 35 (01) :85-&
[10]   ELECTROLYTIC RESISTANCE AT A HYDROGEN-EVOLVING NICKEL WIRE ELECTRODE [J].
HUOT, JY .
JOURNAL OF APPLIED ELECTROCHEMISTRY, 1989, 19 (03) :453-455