Infinitely many large energy solutions for Schrodinger-Kirchhoff type problem in RN

被引:8
作者
Cheng, Bitao [1 ,2 ]
Tang, Xianhua [2 ]
机构
[1] Qujing Normal Univ, Sch Math & Informat Sci, Qujing 655011, Yunnan, Peoples R China
[2] Cent S Univ, Sch Math & Stat, Changsha 410083, Hunan, Peoples R China
来源
JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS | 2016年 / 9卷 / 02期
基金
中国国家自然科学基金;
关键词
Schrodinger-Kirchhoff type problem; critical point; symmetric Mountain Pass Theorem; variational methods; POSITIVE SOLUTIONS; NONTRIVIAL SOLUTIONS; MULTIPLE SOLUTIONS; EXISTENCE; EQUATIONS;
D O I
10.22436/jnsa.009.02.28
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the following Schrodinger-Kirchhoff-type problem { -(a + b integral(RN) vertical bar del u vertical bar(2)dx) Delta u + V(x)u = g(x, u), for x is an element of R-N, u(x) -> 0, as vertical bar x vertical bar -> infinity, where constants a > 0, b >= 0, N = 1,2 or 3, V E C(R-N,R), g is an element of C(R-N x R, R). Under more relaxed assumptions on g(x, u), by using some special techniques, a new existence result of infinitely many energy solutions is obtained via Symmetric Mountain Pass Theorem. (C) 2016 All rights reserved.
引用
收藏
页码:652 / 660
页数:9
相关论文
共 28 条
[1]   A nonlinear superposition principle and multibump solutions of periodic Schrodinger equations [J].
Ackermann, N .
JOURNAL OF FUNCTIONAL ANALYSIS, 2006, 234 (02) :277-320
[2]   Nonlinear perturbations of a periodic Kirchhoff equation in RN [J].
Alves, Claudianor O. ;
Figueiredo, Giovany M. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (05) :2750-2759
[3]   Positive solutions for a quasilinear elliptic equation of Kirchhoff type [J].
Alves, CO ;
Corrêa, FJSA ;
Ma, TF .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2005, 49 (01) :85-93
[4]   Multiple critical points for a class of nonlinear functionals [J].
Azzollini, A. ;
d'Avenia, P. ;
Pomponio, A. .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2011, 190 (03) :507-523
[5]   EXISTENCE AND MULTIPLICITY RESULTS FOR SOME SUPERLINEAR ELLIPTIC PROBLEMS ON R(N) [J].
BARTSCH, T ;
WANG, ZQ .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1995, 20 (9-10) :1725-1741
[6]   Multiple solutions for a class of Kirchhoff type problems with concave nonlinearity [J].
Cheng, Bitao ;
Wu, Xian ;
Liu, Jun .
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2012, 19 (05) :521-537
[7]   New existence and multiplicity of nontrivial solutions for nonlocal elliptic Kirchhoff type problems [J].
Cheng, Bitao .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 394 (02) :488-495
[8]   Existence results of positive solutions of Kirchhoff type problems [J].
Cheng, Bitao ;
Wu, Xian .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (10) :4883-4892
[9]   Some remarks on non local elliptic and parabolic problems [J].
Chipot, M ;
Lovat, B .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1997, 30 (07) :4619-4627
[10]   Existence and concentration behavior of positive solutions for a Kirchhoff equation in R3 [J].
He, Xiaoming ;
Zou, Wenming .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 252 (02) :1813-1834