Computing transient gating charge movement of voltage-dependent ion channels

被引:3
作者
Varghese, A [1 ]
Boland, LM [1 ]
机构
[1] Univ Minnesota, Dept Neurosci, Minneapolis, MN 55455 USA
关键词
ion channels; gating current; charge movement; inactivation; immobilization; Markov state model;
D O I
10.1023/A:1015712824133
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
The opening of voltage-gated sodium, potassium, and calcium ion channels has a steep relationship with voltage. In response to changes in the transmembrane voltage, structural movements of an ion channel that precede channel opening generate a capacitative gating current. The net gating charge displacement due to membrane depolarization is an index of the voltage sensitivity of the ion channel activation process. Understanding the molecular basis of voltage-dependent gating of ion channels requires the measurement and computation of the gating charge, Q. We derive a simple and accurate semianalytic approach to computing the voltage dependence of transient gating charge movement (Q-V relationship) of discrete Markov state models of ion channels using matrix methods. This approach allows rapid computation of Q-V curves for finite and infinite length step depolarizations and is consistent with experimentally measured transient gating charge. This computational approach was applied to Shaker potassium channel gating, including the impact of inactivating particles on potassium channel gating currents.
引用
收藏
页码:123 / 137
页数:15
相关论文
共 47 条
[1]  
Almers W, 1978, Rev Physiol Biochem Pharmacol, V82, P96, DOI 10.1007/BFb0030498
[2]  
[Anonymous], 1995, Single-channel recording
[3]  
[Anonymous], 1998, MATRIX COMPUTATIONS
[4]   SODIUM-CHANNELS AND GATING CURRENTS [J].
ARMSTRONG, CM .
PHYSIOLOGICAL REVIEWS, 1981, 61 (03) :644-683
[5]   INACTIVATION OF SODIUM CHANNEL .2. GATING CURRENT EXPERIMENTS [J].
ARMSTRONG, CM ;
BEZANILLA, F .
JOURNAL OF GENERAL PHYSIOLOGY, 1977, 70 (05) :567-590
[6]   CURRENTS RELATED TO MOVEMENT OF GATING PARTICLES OF SODIUM CHANNELS [J].
ARMSTRONG, CM ;
BEZANILLA, F .
NATURE, 1973, 242 (5398) :459-461
[7]   Voltage-gated ion channels and electrical excitability [J].
Armstrong, CM ;
Hille, B .
NEURON, 1998, 20 (03) :371-380
[8]  
ARMSTRONG CM, 1975, QUART REV BIOPH, V7, P179
[9]   MOLECULAR-BASIS OF GATING CHARGE IMMOBILIZATION IN SHAKER POTASSIUM CHANNELS [J].
BEZANILLA, F ;
PEROZO, E ;
PAPAZIAN, DM ;
STEFANI, E .
SCIENCE, 1991, 254 (5032) :679-683
[10]   GATING CURRENTS ASSOCIATED WITH POTASSIUM CHANNEL ACTIVATION [J].
BEZANILLA, F ;
WHITE, MM ;
TAYLOR, RE .
NATURE, 1982, 296 (5858) :657-659