Determinant Identities and the Geometry of Lines and Circles

被引:2
作者
Anghel, Nicolae [1 ]
机构
[1] Univ N Texas, Dept Math, Denton, TX 76203 USA
来源
ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA | 2014年 / 22卷 / 02期
关键词
Determinant; Line; Circle; Complex Numbers; Mobius Transformation; Steiner Line; Euler Nine-Point Circle; Johnson-Tzitzeica Circles; International Mathematical Olympiad;
D O I
10.2478/auom-2014-0029
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The focus of this note is the nontrivial determinant identities which typically underlie the complex analytic proofs of all the results in the plane geometry of lines and circles. After setting up a basic dictionary relating lines and circles to complex determinants we derive such identities in connection with four geometry problems: the Steiner line, a variant of Euler's nine-point circle, the Johnson-Tzitzeica circles, and an extension of a certain geometry problem, proposed at the 52nd International Mathematical Olympiad, Amsterdam 2011.
引用
收藏
页码:37 / 49
页数:13
相关论文
共 4 条
[1]  
Conway JB., 1978, FUNCTIONS ONE COMPLE
[2]  
Johnson R. A., 1916, Amer. Math. Monthly, V23, P161
[3]  
Todor R., 2012, GAZ MAT B, VCXVII, P1
[4]  
Tzitzeica G., 1961, PROBLEMS GEOMETRY