Every graph of sufficiently large average degree contains a C4-Free subgraph of large average degree

被引:21
作者
Kühn, D
Osthus, D
机构
[1] Free Univ Berlin, Inst Math, D-14195 Berlin, Germany
[2] Humboldt Univ, Inst Informat, D-10099 Berlin, Germany
关键词
D O I
10.1007/s00493-004-0010-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that for every k there exists d=d(k) such that every graph of average degree at least d contains a subgraph of average degree at least k and girth at least six. This settles a special case of a conjecture of Thomassen.
引用
收藏
页码:155 / 162
页数:8
相关论文
共 6 条
[1]  
[Anonymous], 1969, PROOF TECHNIQUES GRA
[2]  
Diestel R., 1997, Graph Theory
[3]   REGULAR SUBGRAPHS OF DENSE GRAPHS [J].
PYBER, L .
COMBINATORICA, 1985, 5 (04) :347-349
[4]   DENSE GRAPHS WITHOUT 3-REGULAR SUBGRAPHS [J].
PYBER, L ;
RODL, V ;
SZEMEREDI, E .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1995, 63 (01) :41-54
[5]   CHROMATIC NUMBER OF SUBGRAPHS OF A GIVEN GRAPH [J].
RODL, V .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1977, 64 (02) :370-371
[6]   GIRTH IN GRAPHS [J].
THOMASSEN, C .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1983, 35 (02) :129-141