Thermal Expansion Matching via Framework Flexibility in Zinc Dicyanometallates

被引:107
作者
Goodwin, Andrew L. [1 ,2 ]
Kennedy, Brendan J. [1 ]
Kepert, Cameron J. [1 ]
机构
[1] Univ Sydney, Sch Chem, Sydney, NSW 2006, Australia
[2] Univ Cambridge, Dept Earth Sci, Cambridge CB2 3EQ, England
基金
澳大利亚研究理事会; 英国工程与自然科学研究理事会;
关键词
METAL-ORGANIC FRAMEWORKS; SINGLE-CRYSTAL; DIFFRACTION; BEHAVIOR; SORPTION; AUCN; AGCN; ZN;
D O I
10.1021/ja901355b
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The thermal expansion properties of two isostructural zinc dicyanometaltates that crystallize with and without the inclusion of a weakly interacting secondary crystalline phase have been investigated using variable temperature single-crystal and powder X-ray diffraction. The guest-free Zn[Au(CN)(2)](2) framework was found to show very strong anisotropic positive and negative thermal expansion. In contrast, its cocrystal analogue Zn[Ag(CN)(2)](2)center dot xAgCN exhibited much more moderate behavior, such that the coefficient of thermal expansion for the host Zn[M(CN)(2)](2) framework now matched that of crystalline AgCN. It was proposed that this correlation points to a more general ability of highly flexible framework materials to "match" the thermal expansivity of adhered phases (e.g., substrates, sorbates, or cocrystattized species), suggesting a methodology of eliminating thermal strain in multicomponent assemblies.
引用
收藏
页码:6334 / +
页数:3
相关论文
共 34 条
[1]   Mechanical properties of cubic zinc carboxylate IRMOF-1 metal-organic framework crystals [J].
Bahr, D. F. ;
Reid, J. A. ;
Mook, W. M. ;
Bauer, C. A. ;
Stumpf, R. ;
Skulan, A. J. ;
Moody, N. R. ;
Simmons, B. A. ;
Shindel, M. M. ;
Allendorf, M. D. .
PHYSICAL REVIEW B, 2007, 76 (18)
[2]   High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture [J].
Banerjee, Rahul ;
Phan, Anh ;
Wang, Bo ;
Knobler, Carolyn ;
Furukawa, Hiroyasu ;
O'Keeffe, Michael ;
Yaghi, Omar M. .
SCIENCE, 2008, 319 (5865) :939-943
[3]   Crystal structures of AuCN and AgCN and vibrational spectroscopic studies of AuCN, AgCN, and CuCN+ [J].
Bowmaker, GA ;
Kennedy, BJ ;
Reid, JC .
INORGANIC CHEMISTRY, 1998, 37 (16) :3968-3974
[4]   Pressure enhancement of negative thermal expansion behavior and induced framework softening in zinc cyanide [J].
Chapman, Karena W. ;
Chupas, Peter J. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2007, 129 (33) :10090-+
[5]   Compositional dependence of negative thermal expansion in the Prussian blue analogues MIIPtIV(CN)6 (M = Mn, Fe, Co, Ni, Cu, Zn, Cd) [J].
Chapman, Karena W. ;
Chupas, Peter J. ;
Kepert, Cameron J. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2006, 128 (21) :7009-7014
[6]   Direct observation of a transverse vibrational mechanism for negative thermal expansion in Zn(CN)2:: An atomic pair distribution function analysis [J].
Chapman, KW ;
Chupas, PJ ;
Kepert, CJ .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2005, 127 (44) :15630-15636
[7]   Exceptional negative thermal expansion in isoreticular metal-organic frameworks [J].
Dubbeldam, David ;
Walton, Krista S. ;
Ellis, Donald E. ;
Snurr, Randall Q. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2007, 46 (24) :4496-4499
[8]   Guest-dependent negative thermal expansion in nanoporous Prussian Blue analogues MIIPtIV(CN)6•x{H2O} (0 ≤ x ≤ 2; M = Zn, Cd) [J].
Goodwin, AL ;
Chapman, KW ;
Kepert, CJ .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2005, 127 (51) :17980-17981
[9]   Negative thermal expansion and low-frequency modes in cyanide-bridged framework materials [J].
Goodwin, AL ;
Kepert, CJ .
PHYSICAL REVIEW B, 2005, 71 (14)
[10]   Argentophilicity-dependent colossal thermal expansion in extended Prussian blue analogues [J].
Goodwin, Andrew L. ;
Keen, David A. ;
Tucker, Matthew G. ;
Dove, Martin T. ;
Peters, Lars ;
Evans, John S. O. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (30) :9660-+