Chemical Instability of Dimethyl Sulfoxide in Lithium-Air Batteries

被引:216
作者
Kwabi, David G. [1 ,2 ]
Batcho, Thomas P. [2 ,3 ]
Amanchukwu, Chibueze V. [4 ]
Ortiz-Vitoriano, Nagore [1 ,2 ]
Hammond, Paula [4 ]
Thompson, Carl V. [3 ]
Shao-Horn, Yang [1 ,2 ,3 ]
机构
[1] MIT, Dept Mech Engn, Cambridge, MA 02139 USA
[2] MIT, Electrochem Energy Lab, Cambridge, MA 02139 USA
[3] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA
[4] MIT, Dept Chem Engn, Cambridge, MA 02139 USA
基金
美国国家科学基金会;
关键词
ELECTROCHEMICAL REDUCTION; OXYGEN REDUCTION; SUPEROXIDE ION; LI-O-2; LI2O2; STABILITY; DISCHARGE; SOLVENTS; OXIDATION; DECOMPOSITION;
D O I
10.1021/jz5013824
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Although dimethyl sulfoxide (DMSO) has emerged as a promising solvent for Li-air batteries, enabling reversible oxygen reduction and evolution (2Li + O-2 double left right arrow Li2O2), DMSO is well known to react with superoxide-like species, which are intermediates in the Li-O-2 reaction, and LiOH has been detected upon discharge in addition to Li2O2. Here we show that toroidal Li2O2 particles formed upon discharge gradually convert into flake-like LiOH particles upon prolonged exposure to a DMSO-based electrolyte, and the amount of LiOH detectable increases with increasing rest time in the electrolyte. Such time-dependent electrode changes upon and after discharge are not typically monitored and can explain vastly different amounts of Li2O2 and LiOH reported in oxygen cathodes discharged in DMSO-based electrolytes. The formation of LiOH is attributable to the chemical reactivity of DMSO with Li2O2 and superoxide-like species, which is supported by our findings that commercial Li2O2 powder can decompose DMSO to DMSO2, and that the presence of KO2 accelerates both DMSO decomposition and conversion of Li2O2 into LiOH.
引用
收藏
页码:2850 / 2856
页数:7
相关论文
共 49 条
[1]   Interactions of Dimethoxy Ethane with Li2O2 Clusters and Likely Decomposition Mechanisms for Li-O2 Batteries [J].
Assary, Rajeev S. ;
Lau, Kah Chun ;
Amine, Khalil ;
Sun, Yang-Kook ;
Curtiss, Larry A. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2013, 117 (16) :8041-8049
[2]   Non-Aqueous and Hybrid Li-O2 Batteries [J].
Black, Robert ;
Adams, Brian ;
Nazar, L. F. .
ADVANCED ENERGY MATERIALS, 2012, 2 (07) :801-815
[3]   Screening for Superoxide Reactivity in Li-O2 Batteries: Effect on Li2O2/LiOH Crystallization [J].
Black, Robert ;
Oh, Si Hyoung ;
Lee, Jin-Hyon ;
Yim, Taeeun ;
Adams, Brian ;
Nazar, Linda F. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (06) :2902-2905
[4]  
Bruce PG, 2012, NAT MATER, V11, P19, DOI [10.1038/nmat3191, 10.1038/NMAT3191]
[5]   The Identification of Stable Solvents for Nonaqueous Rechargeable Li-Air Batteries [J].
Bryantsev, Vyacheslav S. ;
Uddin, Jasim ;
Giordani, Vincent ;
Walker, Wesley ;
Addison, Dan ;
Chase, Gregory V. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2013, 160 (01) :A160-A171
[6]   ELECTROCHEMISTRY IN DIMETHYL SULFOXIDE [J].
BUTLER, JN .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1967, 14 (01) :89-&
[7]   A rotating ring disk electrode study of the oxygen reduction reaction in lithium containing non aqueous electrolyte [J].
Calvo, E. J. ;
Mozhzhukhina, N. .
ELECTROCHEMISTRY COMMUNICATIONS, 2013, 31 :56-58
[8]   PROTON-INDUCED DISPROPORTIONATION OF SUPEROXIDE ION IN APROTIC MEDIA [J].
CHIN, DH ;
CHIERICATO, G ;
NANNI, EJ ;
SAWYER, DT .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1982, 104 (05) :1296-1299
[9]   Tracking Formation and Decomposition of Abacus-Ball-Shaped Lithium Peroxides in Li-O2 Cells [J].
Fan, Wugang ;
Cui, Zhonghui ;
Guo, Xiangxin .
JOURNAL OF PHYSICAL CHEMISTRY C, 2013, 117 (06) :2623-2627
[10]   The Lithium-Oxygen Battery with Ether-Based Electrolytes [J].
Freunberger, Stefan A. ;
Chen, Yuhui ;
Drewett, Nicholas E. ;
Hardwick, Laurence J. ;
Barde, Fanny ;
Bruce, Peter G. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2011, 50 (37) :8609-8613