Electrochemical performance investigation of electrospun urchin-like V2O3-CNF composite nanostructure for vanadium redox flow battery

被引:45
作者
Busacca, C. [1 ]
Blasi, O. Di [1 ]
Briguglio, N. [1 ]
Ferraro, M. [1 ]
Antonucci, V. [1 ]
Di Blasi, A. [1 ]
机构
[1] CNR, Ist Tecnol Avanzate Energia Nicola Giordano ITAE, Salita S Lucia Sopra,Contesse 5, I-98126 Messina, Italy
关键词
transition metal oxide; vanadium redox flow battery; carbon nanofiber; electrospinning technique; electrochemical characterization; CERAMIC NANOFIBERS; CARBON NANOFIBERS; ENERGY-CONVERSION; GRAPHENE; NANORODS; STORAGE; OXIDES;
D O I
10.1016/j.electacta.2017.01.193
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Home-made electrospun catalyst based on urchin -like vanadium (III) oxide -carbon nanofiber (V2O3-CNF) composite is synthesized from a solution containing vanadium (V) oxytriisopropoxide VO-(OiPr)(3) as metal oxide precursor and polyvinylpyrrolidone (PVP) as carbon source for vanadium redox flow battery (VRFB) application. X-ray diffraction (XRD) as well as scanning electron microscopy (SEM) analysis show a typical V2O3 rhombohedral structure and an urchin-like V2O3-CNF morphology, respectively. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) measurements show a high electrocatalytic activity for the composite electrospun samples both in terms of peak to peak separation (Delta E = 0.02 V) and lower charge transfer resistance (R-ct = 0.12 ohm cm(2)) with respect to a pristine CNF. The better reversibility is ascribed to the oxygen functional groups presence that act as catalytic sites reducing kinetic overpotentials. Moreover, thanks to the rhombohedral structure of V2O3, as well as to the more graphitic structure of the carbon, a suitable electrical conductivity is guaranteed for reducing ohmic overpotentials. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:174 / 180
页数:7
相关论文
共 41 条
[1]   Nanostructured materials for advanced energy conversion and storage devices [J].
Aricò, AS ;
Bruce, P ;
Scrosati, B ;
Tarascon, JM ;
Van Schalkwijk, W .
NATURE MATERIALS, 2005, 4 (05) :366-377
[2]   Electrospinning of ultrafine metal oxide/carbon and metal carbide/carbon nanocomposite fibers [J].
Atchison, Jennifer S. ;
Zeiger, Marco ;
Tolosa, Aura ;
Funke, Lena M. ;
Jaeckel, Nicolas ;
Presser, Volker .
RSC ADVANCES, 2015, 5 (45) :35683-35692
[3]  
Bayati R., 2014, J NANOMATER, V2014, P1
[4]   Electrochemical investigation of thermically treated graphene oxides as electrode materials for vanadium redox flow battery [J].
Di Blasi, O. ;
Briguglio, N. ;
Busacca, C. ;
Ferraro, M. ;
Antonucci, V. ;
Di Blasi, A. .
APPLIED ENERGY, 2015, 147 :74-81
[5]   Highly electrocatalytic flexible nanofiber for improved vanadium-based redox flow battery cathode electrodes [J].
Flox, Cristina ;
Fabrega, Cristian ;
Andreu, Teresa ;
Morata, Alex ;
Skoumal, Marcel ;
Rubio-Garcia, Javier ;
Ramon Morante, Juan .
RSC ADVANCES, 2013, 3 (30) :12056-12059
[6]   High surface area Ti-based mixed oxides nanofibers prepared by electrospinning [J].
Frontera, P. ;
Scarpino, L. A. ;
Busacca, C. ;
Antonucci, P. L. ;
Siracusano, S. ;
Arico, A. S. .
MATERIALS LETTERS, 2014, 134 :281-285
[7]   Nanostructured materials: Basic concepts and microstructure [J].
Gleiter, H .
ACTA MATERIALIA, 2000, 48 (01) :1-29
[8]  
Han BQ, 2005, REV ADV MATER SCI, V9, P1
[9]   Possible use of vanadium redox-flow batteries for energy storage in small grids and stand-alone photovoltaic systems [J].
Joerissen, L ;
Garche, J ;
Fabjan, C ;
Tomazic, G .
JOURNAL OF POWER SOURCES, 2004, 127 (1-2) :98-104
[10]   VANADIUM REDOX REACTIONS AND CARBON ELECTRODES FOR VANADIUM REDOX FLOW BATTERY [J].
KANEKO, H ;
NOZAKI, K ;
WADA, Y ;
AOKI, T ;
NEGISHI, A ;
KAMIMOTO, M .
ELECTROCHIMICA ACTA, 1991, 36 (07) :1191-1196